論文の概要: On Counterfactual Interventions in Vector Autoregressive Models
- arxiv url: http://arxiv.org/abs/2406.19573v1
- Date: Thu, 27 Jun 2024 23:25:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 18:10:10.157615
- Title: On Counterfactual Interventions in Vector Autoregressive Models
- Title(参考訳): ベクトル自己回帰モデルにおける非現実的干渉について
- Authors: Kurt Butler, Marija Iloska, Petar M. Djuric,
- Abstract要約: 本稿では,ベクトル自己回帰過程の文脈における反実的推論の問題を紹介する。
因果モデルの推論を連立回帰タスクとして定式化する。
過去の対策介入の因果効果を定量化する。
- 参考スコア(独自算出の注目度): 18.39697940783397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual reasoning allows us to explore hypothetical scenarios in order to explain the impacts of our decisions. However, addressing such inquires is impossible without establishing the appropriate mathematical framework. In this work, we introduce the problem of counterfactual reasoning in the context of vector autoregressive (VAR) processes. We also formulate the inference of a causal model as a joint regression task where for inference we use both data with and without interventions. After learning the model, we exploit linearity of the VAR model to make exact predictions about the effects of counterfactual interventions. Furthermore, we quantify the total causal effects of past counterfactual interventions. The source code for this project is freely available at https://github.com/KurtButler/counterfactual_interventions.
- Abstract(参考訳): 因果推論は、私たちの決定の影響を説明するために仮説的なシナリオを探索することを可能にする。
しかし、適切な数学的枠組みを確立することなく、そのような問いに対処することは不可能である。
本稿では,ベクトル自己回帰(VAR)プロセスの文脈における反実的推論の問題を紹介する。
また, 因果モデルの推論を連立回帰タスクとして定式化し, データの相互利用と介入なしの推論を行う。
モデル学習後、VARモデルの線形性を利用して、対実的介入の効果を正確に予測する。
さらに,過去の対実的介入の因果効果の定量化を行った。
このプロジェクトのソースコードはhttps://github.com/KurtButler/counterfactual_interventionsで無償公開されている。
関連論文リスト
- Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
本稿では,ガウス過程ネットワークモデルにおける仮説的介入の効果のベイズ推定の問題について考察する。
本稿では,ネットワーク全体の介入の効果をシミュレートし,下流変数に対する介入の効果を伝播させることにより,GPNに対する因果推論を行う方法について述べる。
両フレームワークを既知の因果グラフのケースを超えて拡張し,マルコフ連鎖モンテカルロ法による因果構造の不確実性を取り入れた。
論文 参考訳(メタデータ) (2024-02-01T14:39:59Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Causal Discovery using Model Invariance through Knockoff Interventions [8.330791157878137]
DeepARを用いて時系列における非線形相互作用をモデル化する。
Knockoffsベースの介入を使用して、モデルを異なる環境に公開します。
反応残差の分布は,非因果予測器の介入によって大きく変化しないことを示す。
論文 参考訳(メタデータ) (2022-07-08T14:46:47Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known [0.0]
我々はベイズモデル平均化(BMA)のようなアンサンブル法を用いて因果グラフの集合を推定する。
潜在的な介入の期待値とリスクを明示的に計算して意思決定を行います。
論文 参考訳(メタデータ) (2021-05-12T01:55:45Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - Estimating Causal Effects with the Neural Autoregressive Density
Estimator [6.59529078336196]
我々は、Pearlのdo-calculusフレームワーク内の因果効果を推定するために、神経自己回帰密度推定器を使用する。
本手法は,変数間の相互作用を明示的にモデル化することなく,非線形システムから因果効果を抽出できることを示す。
論文 参考訳(メタデータ) (2020-08-17T13:12:38Z) - Autoregressive flow-based causal discovery and inference [4.83420384410068]
自己回帰フローモデルは、様々な因果推論タスクを実行するのに適している。
自己回帰型アーキテクチャは、因果順序に類似した変数の順序を定義しているという事実を活用する。
本稿では, 自己回帰的流れを正しい因果順序で訓練することにより, 正確な介入予測と反事実予測を行うことができる, 合成データの例を示す。
論文 参考訳(メタデータ) (2020-07-18T10:02:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。