論文の概要: SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2406.19593v2
- Date: Mon, 09 Jun 2025 21:57:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:38.560488
- Title: SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs
- Title(参考訳): SK-VQA: 文脈拡張型マルチモーダルLLMの学習のための大規模合成知識生成
- Authors: Xin Su, Man Luo, Kris W Pan, Tien Pei Chou, Vasudev Lal, Phillip Howard,
- Abstract要約: SK-VQA(SK-VQA)は,200万以上の視覚的質問応答対を含む大規模合成マルチモーダルデータセットである。
人間の評価を通じて,生成した質問応答対の質と文脈的関連性を確認する。
以上の結果から,SK-VQAでトレーニングしたモデルは,コンテキスト対応VQAとマルチモーダルRAG設定の両方において拡張された一般化を示した。
- 参考スコア(独自算出の注目度): 6.879945062426145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal retrieval augmented generation (RAG) plays a crucial role in domains such as knowledge-based visual question answering (KB-VQA), where external knowledge is needed to answer a question. However, existing multimodal LLMs (MLLMs) are not designed for context-augmented generation, limiting their effectiveness in such tasks. While synthetic data generation has recently gained attention for training MLLMs, its application for context-augmented generation remains underexplored. To address this gap, we introduce SK-VQA, a large-scale synthetic multimodal dataset containing over 2 million visual question-answer pairs, each associated with context documents containing information necessary to determine the final answer. Compared to previous datasets, SK-VQA contains 11x more unique questions, exhibits greater domain diversity, and covers a broader spectrum of image sources. Through human evaluations, we confirm the high quality of the generated question-answer pairs and their contextual relevance. Extensive experiments show that SK-VQA serves both as a challenging KB-VQA benchmark and as an effective training resource for adapting MLLMs to context-augmented generation. Our results further indicate that models trained on SK-VQA demonstrate enhanced generalization in both context-aware VQA and multimodal RAG settings. SK-VQA is publicly available via Hugging Face Hub.
- Abstract(参考訳): 知識に基づく視覚的質問応答(KB-VQA)のようなドメインでは,外部知識が質問に答えるために必要な領域において,マルチモーダル検索拡張生成(RAG)が重要な役割を果たす。
しかし、既存のマルチモーダル LLM (MLLM) は文脈拡張生成のために設計されておらず、それらのタスクの有効性を制限している。
合成データ生成は近年,MLLMの訓練に注目されているが,その文脈拡張生成への応用はいまだ検討されていない。
このギャップに対処するために,200万以上の視覚的質問応答対を含む大規模合成マルチモーダルデータセットであるSK-VQAを導入する。
以前のデータセットと比較すると、SK-VQAは11倍のユニークな質問を含み、領域の多様性を示し、画像ソースの幅広い範囲をカバーする。
人間の評価を通じて,生成した質問応答対の質と文脈的関連性を確認する。
大規模な実験により、SK-VQAはKB-VQAベンチマークに挑戦し、MLLMを文脈拡張世代に適用するための効果的なトレーニングリソースとして機能することが示された。
さらに,SK-VQAでトレーニングしたモデルが,コンテキスト対応VQAとマルチモーダルRAG設定の両方において拡張された一般化を示した。
SK-VQAはHugging Face Hubを通じて公開されている。
関連論文リスト
- Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation [2.549112678136113]
Retrieval-Augmented Generation (RAG) は、外部の動的情報を統合することで問題を緩和する。
クロスモーダルアライメントと推論はMultimodal RAGに固有の課題をもたらし、従来の単調なRAGと区別する。
この調査は、より有能で信頼性の高いAIシステムを開発するための基盤となる。
論文 参考訳(メタデータ) (2025-02-12T22:33:41Z) - Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy [2.294223504228228]
人工知能の急速に発展する分野であるマルチモーダル学習は、より汎用的で堅牢なシステムの構築を目指している。
多くの感覚を通じて情報を同化する人間の能力に触発され、テキストからビデオへの変換、視覚的質問応答、画像キャプションなどの応用が可能となる。
マルチモーダル言語モデル(MLLM)をサポートするデータセットの最近の発展について概説する。
論文 参考訳(メタデータ) (2024-12-23T18:15:19Z) - Synthetic Data Generation with Large Language Models for Personalized Community Question Answering [47.300506002171275]
既存のデータセットであるSE-PQAに基づいてSy-SE-PQAを構築します。
以上の結果から,LCMはユーザのニーズに合わせてデータを生成する可能性が高いことが示唆された。
合成データは、たとえ生成されたデータが誤った情報を含むとしても、人書きのトレーニングデータを置き換えることができる。
論文 参考訳(メタデータ) (2024-10-29T16:19:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - Semantic-Aware Representation of Multi-Modal Data for Data Ingress: A Literature Review [1.8590097948961688]
LLM(Large Language Models)のような生成AIは、テキスト、画像、オーディオ、ビデオなどのマルチモーダルデータを処理するために広く採用されている。
このデータを効率的に管理することは、データ量が2倍にならないため、業界倍の課題となっている。
本研究では,モノモーダル,マルチモーダル,クロスモーダルデータから埋め込みを抽出するセマンティック・アウェア技術に着目した。
論文 参考訳(メタデータ) (2024-07-17T09:49:11Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは、フィードバック駆動の実験プラットフォームを提供し、コスト効率とデータとモデルの両方のガイド付き洗練を可能にする。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
このデータセットには、スキーマ図、シミュレーション画像、マクロ/顕微鏡写真、実験的可視化などの図が含まれている。
我々は,6つのプロプライエタリモデルと10以上のオープンソースモデルを評価し,科学的フィギュアキャプションと複数選択質問のベンチマークを開発した。
データセットとベンチマークは、さらなる研究をサポートするためにリリースされる予定だ。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - Comprehensive Exploration of Synthetic Data Generation: A Survey [4.485401662312072]
この研究は、過去10年間で417のSynthetic Data Generationモデルを調査します。
その結果、ニューラルネットワークベースのアプローチが普及し、モデルのパフォーマンスと複雑性が向上したことが明らかになった。
コンピュータビジョンが支配的であり、GANが主要な生成モデルであり、拡散モデル、トランスフォーマー、RNNが競合する。
論文 参考訳(メタデータ) (2024-01-04T20:23:51Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
本稿ではUNK-VQAと呼ばれる包括的データセットを提案する。
まず、画像または疑問について意図的に摂動することで、既存のデータを拡大する。
そこで我々は,新たなマルチモーダル大規模モデルのゼロショット性能と少数ショット性能を広範囲に評価した。
論文 参考訳(メタデータ) (2023-10-17T02:38:09Z) - UnitedHuman: Harnessing Multi-Source Data for High-Resolution Human
Generation [59.77275587857252]
総合的な人間のデータセットは、必然的に、局所的な部分についての不十分で低解像度な情報を持っている。
本稿では,高解像度な人為的生成モデルを共同で学習するために,様々な解像度画像を用いたマルチソースデータセットを提案する。
論文 参考訳(メタデータ) (2023-09-25T17:58:46Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。