Polynomial Complexity of Inversion of sequences and Local Inversion of Maps
- URL: http://arxiv.org/abs/2406.19610v1
- Date: Fri, 28 Jun 2024 02:34:29 GMT
- Title: Polynomial Complexity of Inversion of sequences and Local Inversion of Maps
- Authors: Virendra Sule,
- Abstract summary: Paper defines and explores solution to the problem of emphInversion of a finite Sequence over the binary field.
The minimum number of variables (order) in Complexity of a fixed degree defining RRs is termed as the emphPolynomial of the sequence at that degree.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This Paper defines and explores solution to the problem of \emph{Inversion of a finite Sequence} over the binary field, that of finding a prefix element of the sequence which confirms with a \emph{Recurrence Relation} (RR) rule defined by a polynomial and satisfied by the sequence. The minimum number of variables (order) in a polynomial of a fixed degree defining RRs is termed as the \emph{Polynomial Complexity} of the sequence at that degree, while the minimum number of variables of such polynomials at a fixed degree which also result in a unique prefix to the sequence and maximum rank of the matrix of evaluation of its monomials, is called \emph{Polynomial Complexity of Inversion} at the chosen degree. Solutions of this problems discovers solutions to the problem of \emph{Local Inversion} of a map $F:\ftwo^n\rightarrow\ftwo^n$ at a point $y$ in $\ftwo^n$, that of solving for $x$ in $\ftwo^n$ from the equation $y=F(x)$. Local inversion of maps has important applications which provide value to this theory. In previous work it was shown that minimal order \emph{Linear Recurrence Relations} (LRR) satisfied by the sequence known as the \emph{Linear Complexity} (LC) of the sequence, gives a unique solution to the inversion when the sequence is a part of a periodic sequence. This paper explores extension of this theory for solving the inversion problem by considering \emph{Non-linear Recurrence Relations} defined by a polynomials of a fixed degree $>1$ and satisfied by the sequence. The minimal order of polynomials satisfied by a sequence is well known as non-linear complexity (defining a Feedback Shift Register of smallest order which determines the sequences by RRs) and called as \emph{Maximal Order Complexity} (MOC) of the sequence. However unlike the LC there is no unique polynomial recurrence relation at any degree.
Related papers
- Faster Sampling from Log-Concave Densities over Polytopes via Efficient Linear Solvers [29.212403229351253]
We present a nearly-optimal implementation of this Markov chain with per-step complexity which is roughly the number of non-zero entries of $A$ while the number of Markov chain steps remains the same.
Key technical ingredients are 1) to show that the matrices that arise in this Dikin walk change slowly, 2) to deploy efficient linear solvers that can leverage this slow change to speed up matrix inversion by using information computed in previous steps, and 3) to speed up the computation of the determinantal term in the Metropolis filter step via a randomized Taylor series-based estimator.
arXiv Detail & Related papers (2024-09-06T14:49:43Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Positive Moments Forever: Undecidable and Decidable Cases [1.3124513975412255]
We show that the positivity problem for simple unitary linear recurrence sequences is decidable, and is undecidable for linear recurrence sequences over the ring of commutatives.
As a byproduct, we prove a free version of Polya's theorem.
arXiv Detail & Related papers (2024-04-23T13:53:37Z) - Word Linear Complexity of sequences and Local Inversion of maps over finite fields [0.0]
This paper develops the notion of vector valued sequences over finite fields $ff$ as an extension of Linear Complexity$ of their ensembles.
It shows that the matrix minimal can be used with iteratively generated vector valued by maps $F:ffn at a given $ffn$ in $ffn$ for solving the unique local inverse $x$ in $ffn$ when the sequence is periodic.
arXiv Detail & Related papers (2023-11-11T14:06:23Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
"Statistical-computational gaps" occur in many statistical inference tasks.
We consider a model for random order-3 decomposition where one component is slightly larger in norm than the rest.
We show that tensor entries can accurately estimate the largest component when $ll n3/2$ but fail to do so when $rgg n3/2$.
arXiv Detail & Related papers (2022-11-10T00:40:37Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix
Factorization [49.090785356633695]
We study the asymmetric low-rank factorization problem: [mathbfU in mathbbRm min d, mathbfU$ and mathV$.
arXiv Detail & Related papers (2021-06-27T17:25:24Z) - Unique sparse decomposition of low rank matrices [17.037882881652617]
We find a unique decomposition of a low rank matrixYin mathbbRrtimes n$.
We prove that up to some $Yin mathRrtimes n$ is a sparse-wise decomposition of $Xin mathbbRrtimes n$.
arXiv Detail & Related papers (2021-06-14T20:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.