Personalized Interpretation on Federated Learning: A Virtual Concepts approach
- URL: http://arxiv.org/abs/2406.19631v1
- Date: Fri, 28 Jun 2024 03:39:45 GMT
- Title: Personalized Interpretation on Federated Learning: A Virtual Concepts approach
- Authors: Peng Yan, Guodong Long, Jing Jiang, Michael Blumenstein,
- Abstract summary: This paper aims to design a novel FL method to robust and interpret the non-IID data across clients.
conceptual vectors could be pre-defined or refined in a human-in-the-loop process.
The effectiveness of the proposed method have been validated on benchmark datasets.
- Score: 33.95613093566137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tackling non-IID data is an open challenge in federated learning research. Existing FL methods, including robust FL and personalized FL, are designed to improve model performance without consideration of interpreting non-IID across clients. This paper aims to design a novel FL method to robust and interpret the non-IID data across clients. Specifically, we interpret each client's dataset as a mixture of conceptual vectors that each one represents an interpretable concept to end-users. These conceptual vectors could be pre-defined or refined in a human-in-the-loop process or be learnt via the optimization procedure of the federated learning system. In addition to the interpretability, the clarity of client-specific personalization could also be applied to enhance the robustness of the training process on FL system. The effectiveness of the proposed method have been validated on benchmark datasets.
Related papers
- UA-PDFL: A Personalized Approach for Decentralized Federated Learning [5.065947993017158]
Federated learning (FL) is a privacy preserving machine learning paradigm designed to collaboratively learn a global model without data leakage.
To mitigate this issue, decentralized federated learning (DFL) has been proposed, where all participating clients engage in peer-to-peer communication without a central server.
We propose a novel unit representation aided personalized decentralized federated learning framework, named UA-PDFL, to deal with the non-IID challenge in DFL.
arXiv Detail & Related papers (2024-12-16T11:27:35Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Client2Vec: Improving Federated Learning by Distribution Shifts Aware Client Indexing [8.652459650860592]
Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm.
The Client2Vec mechanism generates a unique client index for each client before the commencement of FL training.
We conduct three case studies that assess the impact of the client index on the FL training process.
arXiv Detail & Related papers (2024-05-25T13:49:23Z) - FedEGG: Federated Learning with Explicit Global Guidance [90.04705121816185]
Federated Learning (FL) holds great potential for diverse applications owing to its privacy-preserving nature.
Existing methods help address these challenges via optimization-based client constraints, adaptive client selection, or the use of pre-trained models or synthetic data.
We present bftextFedEGG, a new FL algorithm that constructs a global guiding task using a well-defined, easy-to-converge learning task.
arXiv Detail & Related papers (2024-04-18T04:25:21Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices.
Ensuring the integrity and traceability of data across these distributed environments remains a critical challenge.
We propose one of the first approaches to enhance data provenance and model transparency in FL systems.
arXiv Detail & Related papers (2024-03-03T09:08:41Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - DPP-based Client Selection for Federated Learning with Non-IID Data [97.1195165400568]
This paper proposes a client selection (CS) method to tackle the communication bottleneck of federated learning (FL)
We first analyze the effect of CS in FL and show that FL training can be accelerated by adequately choosing participants to diversify the training dataset in each round of training.
We leverage data profiling and determinantal point process (DPP) sampling techniques to develop an algorithm termed Federated Learning with DPP-based Participant Selection (FL-DP$3$S)
arXiv Detail & Related papers (2023-03-30T13:14:54Z) - Group Personalized Federated Learning [15.09115201646396]
Federated learning (FL) can help promote data privacy by training a shared model in a de-centralized manner on the physical devices of clients.
In this paper, we present the group personalization approach for applications of FL.
arXiv Detail & Related papers (2022-10-04T19:20:19Z) - Federated Learning for Non-IID Data via Client Variance Reduction and
Adaptive Server Update [5.161531917413708]
Federated learning (FL) is an emerging technique used to collaboratively train a global machine learning model.
The main obstacle to FL's practical implementation is the Non-Independent and Identical (Non-IID) data distribution across users.
We propose a method (ComFed) that enhances the whole training process on both the client and server sides.
arXiv Detail & Related papers (2022-07-18T05:58:19Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.