DISCO: Efficient Diffusion Solver for Large-Scale Combinatorial Optimization Problems
- URL: http://arxiv.org/abs/2406.19705v5
- Date: Mon, 21 Oct 2024 13:38:48 GMT
- Title: DISCO: Efficient Diffusion Solver for Large-Scale Combinatorial Optimization Problems
- Authors: Kexiong Yu, Hang Zhao, Yuhang Huang, Renjiao Yi, Kai Xu, Chenyang Zhu,
- Abstract summary: DISCO is an efficient DIffusion solver for large-scale Combinatorial Optimization problems.
It constrains the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions.
It delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference time up to 5.28 times faster than other diffusion alternatives.
- Score: 37.205311971072405
- License:
- Abstract: Combinatorial Optimization (CO) problems are fundamentally important in numerous real-world applications across diverse industries, characterized by entailing enormous solution space and demanding time-sensitive response. Despite recent advancements in neural solvers, their limited expressiveness struggles to capture the multi-modal nature of CO landscapes. While some research has shifted towards diffusion models, these models still sample solutions indiscriminately from the entire NP-complete solution space with time-consuming denoising processes, which limit their practicality for large problem scales. We propose DISCO, an efficient DIffusion Solver for large-scale Combinatorial Optimization problems that excels in both solution quality and inference speed. DISCO's efficacy is twofold: First, it enhances solution quality by constraining the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions. Second, it accelerates the denoising process through an analytically solvable approach, enabling solution sampling with minimal reverse-time steps and significantly reducing inference time. DISCO delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference time up to 5.28 times faster than other diffusion alternatives. By incorporating a divide-and-conquer strategy, DISCO can well generalize to solve unseen-scale problem instances, even surpassing models specifically trained for those scales.
Related papers
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
Optimal trajectory local is computationally expensive for nonlinear and high-dimensional dynamical systems.
In this paper we introduce Diffu-based general model for non-dimensional optima problems.
We also present Diff+, a novel constrained diffusion model with an additional loss in that further reduces the problem violations.
arXiv Detail & Related papers (2024-02-22T03:52:17Z) - Continuous Tensor Relaxation for Finding Diverse Solutions in Combinatorial Optimization Problems [0.6906005491572401]
This study introduces Continual Anne Relaxationing (CTRA) for unsupervised-learning (UL)-based CO solvers.
CTRA is a computationally efficient framework for finding diverse solutions in a single training run.
Numerical experiments show that CTRA enables UL-based solvers to find these diverse solutions much faster than repeatedly running existing solvers.
arXiv Detail & Related papers (2024-02-03T15:31:05Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - DIMES: A Differentiable Meta Solver for Combinatorial Optimization
Problems [41.57773395100222]
Deep reinforcement learning (DRL) models have shown promising results in solving NP-hard Combinatorial Optimization problems.
This paper addresses the scalability challenge in large-scale optimization by proposing a novel approach, namely, DIMES.
Unlike previous DRL methods which suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES introduces a compact continuous space for parameterizing the underlying distribution of candidate solutions.
Extensive experiments show that DIMES outperforms recent DRL-based methods on large benchmark datasets for Traveling Salesman Problems and Maximal Independent Set problems.
arXiv Detail & Related papers (2022-10-08T23:24:37Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
We introduce a trainable neural model that learns to map problem instances to a piece-wise linear value function.
$nu$-SDDP can significantly reduce problem solving cost without sacrificing solution quality.
arXiv Detail & Related papers (2021-12-01T22:55:23Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Learning What to Defer for Maximum Independent Sets [84.00112106334655]
We propose a novel DRL scheme, coined learning what to defer (LwD), where the agent adaptively shrinks or stretch the number of stages by learning to distribute the element-wise decisions of the solution at each stage.
We apply the proposed framework to the maximum independent set (MIS) problem, and demonstrate its significant improvement over the current state-of-the-art DRL scheme.
arXiv Detail & Related papers (2020-06-17T02:19:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.