An Efficient Diffusion-based Non-Autoregressive Solver for Traveling Salesman Problem
- URL: http://arxiv.org/abs/2501.13767v1
- Date: Thu, 23 Jan 2025 15:47:04 GMT
- Title: An Efficient Diffusion-based Non-Autoregressive Solver for Traveling Salesman Problem
- Authors: Mingzhao Wang, You Zhou, Zhiguang Cao, Yubin Xiao, Xuan Wu, Wei Pang, Yuan Jiang, Hui Yang, Peng Zhao, Yuanshu Li,
- Abstract summary: We propose DEITSP, a diffusion model with efficient iterations tailored for Traveling Salesman Problems.
We introduce a one-step diffusion model that integrates the controlled discrete noise addition process with self-consistency enhancement.
We also design a dual-modality graph transformer to bolster the extraction and fusion of features from node and edge modalities.
- Score: 21.948190231334088
- License:
- Abstract: Recent advances in neural models have shown considerable promise in solving Traveling Salesman Problems (TSPs) without relying on much hand-crafted engineering. However, while non-autoregressive (NAR) approaches benefit from faster inference through parallelism, they typically deliver solutions of inferior quality compared to autoregressive ones. To enhance the solution quality while maintaining fast inference, we propose DEITSP, a diffusion model with efficient iterations tailored for TSP that operates in a NAR manner. Firstly, we introduce a one-step diffusion model that integrates the controlled discrete noise addition process with self-consistency enhancement, enabling optimal solution prediction through simultaneous denoising of multiple solutions. Secondly, we design a dual-modality graph transformer to bolster the extraction and fusion of features from node and edge modalities, while further accelerating the inference with fewer layers. Thirdly, we develop an efficient iterative strategy that alternates between adding and removing noise to improve exploration compared to previous diffusion methods. Additionally, we devise a scheduling framework to progressively refine the solution space by adjusting noise levels, facilitating a smooth search for optimal solutions. Extensive experiments on real-world and large-scale TSP instances demonstrate that DEITSP performs favorably against existing neural approaches in terms of solution quality, inference latency, and generalization ability. Our code is available at $\href{https://github.com/DEITSP/DEITSP}{https://github.com/DEITSP/DEITSP}$.
Related papers
- Fast T2T: Optimization Consistency Speeds Up Diffusion-Based Training-to-Testing Solving for Combinatorial Optimization [83.65278205301576]
We propose to learn direct mappings from different noise levels to the optimal solution for a given instance, facilitating high-quality generation with minimal shots.
This is achieved through an optimization consistency training protocol, which minimizes the difference among samples.
Experiments on two popular tasks, the Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS), demonstrate the superiority of Fast T2T regarding both solution quality and efficiency.
arXiv Detail & Related papers (2025-02-05T07:13:43Z) - DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization [22.546989373687655]
We propose a novel pruning method that derives an efficient diffusion model via a more intelligent and differentiable pruner.
Our approach achieves 4.4 x speedup for SD-1.5 without any loss of accuracy, significantly outperforming the previous state-of-the-art methods.
arXiv Detail & Related papers (2024-10-22T12:18:24Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
We propose to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality.
Our method achieves new state-of-the-art in diffusion-based inverse problem solving.
arXiv Detail & Related papers (2024-07-17T15:57:50Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
Optimal trajectory local is computationally expensive for nonlinear and high-dimensional dynamical systems.
In this paper we introduce Diffu-based general model for non-dimensional optima problems.
We also present Diff+, a novel constrained diffusion model with an additional loss in that further reduces the problem violations.
arXiv Detail & Related papers (2024-02-22T03:52:17Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.