論文の概要: SPIRONet: Spatial-Frequency Learning and Topological Channel Interaction Network for Vessel Segmentation
- arxiv url: http://arxiv.org/abs/2406.19749v1
- Date: Fri, 28 Jun 2024 08:48:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:20:03.823226
- Title: SPIRONet: Spatial-Frequency Learning and Topological Channel Interaction Network for Vessel Segmentation
- Title(参考訳): SPIRONet: 容器セグメンテーションのための空間周波数学習とトポロジカルチャネルインタラクションネットワーク
- Authors: De-Xing Huang, Xiao-Hu Zhou, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Zhen-Qiu Feng, Mei-Jiang Gui, Hao Li, Tian-Yu Xiang, Bo-Xian Yao, Zeng-Guang Hou,
- Abstract要約: 上記の問題に対処するために,新しい空間周波数学習・トポロジカルチャネル相互作用ネットワーク(SPIRONet)を提案する。
デュアルエンコーダを用いて、局所的な空間的および大域的な周波数容器の特徴を包括的にキャプチャする。
空間的および周波数的特徴を効果的に融合するために、クロスアテンション融合モジュールが導入された。
トポロジカルチャネル相互作用モジュールは、グラフニューラルネットワークに基づいてタスク非関連応答をフィルタリングするように設計されている。
- 参考スコア(独自算出の注目度): 14.684277591969392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic vessel segmentation is paramount for developing next-generation interventional navigation systems. However, current approaches suffer from suboptimal segmentation performances due to significant challenges in intraoperative images (i.e., low signal-to-noise ratio, small or slender vessels, and strong interference). In this paper, a novel spatial-frequency learning and topological channel interaction network (SPIRONet) is proposed to address the above issues. Specifically, dual encoders are utilized to comprehensively capture local spatial and global frequency vessel features. Then, a cross-attention fusion module is introduced to effectively fuse spatial and frequency features, thereby enhancing feature discriminability. Furthermore, a topological channel interaction module is designed to filter out task-irrelevant responses based on graph neural networks. Extensive experimental results on several challenging datasets (CADSA, CAXF, DCA1, and XCAD) demonstrate state-of-the-art performances of our method. Moreover, the inference speed of SPIRONet is 21 FPS with a 512x512 input size, surpassing clinical real-time requirements (6~12FPS). These promising outcomes indicate SPIRONet's potential for integration into vascular interventional navigation systems. Code is available at https://github.com/Dxhuang-CASIA/SPIRONet.
- Abstract(参考訳): 船舶の自動セグメンテーションは、次世代の干渉航法システムを開発する上で最重要課題である。
しかし, 術中画像(低信号-雑音比, 小型血管, 細い血管, 強い干渉)の重大な問題により, 現在のアプローチは, 最適セグメンテーション性能に悩まされている。
本稿では,空間周波数学習とトポロジカルチャネル相互作用ネットワーク(SPIRONet)を提案する。
具体的には、デュアルエンコーダを使用して、局所的な空間的および大域的な周波数容器の特徴を包括的にキャプチャする。
そして、空間的特徴と周波数的特徴を効果的に融合させ、特徴識別性を高めるために、クロスアテンション融合モジュールを導入する。
さらに、トポロジカルチャネル相互作用モジュールは、グラフニューラルネットワークに基づいてタスク非関連応答をフィルタリングするように設計されている。
いくつかの挑戦的データセット(CADSA, CAXF, DCA1, XCAD)の大規模な実験結果から,本手法の最先端性能が示された。
さらに、SPIRONetの推論速度は512x512入力サイズで21FPSであり、臨床リアルタイム要件(6〜12FPS)を超えている。
これらの有望な結果は、SPIRONetが血管介入ナビゲーションシステムに統合される可能性を示している。
コードはhttps://github.com/Dxhuang-CASIA/SPIRONetで入手できる。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics [2.9578022754506605]
骨格に基づく行動認識では、グラフ畳み込みネットワーク(GCN)はその複雑さと高エネルギー消費のために制限に直面している。
本稿では、骨格配列の時間次元をスパイキング時間ステップとして活用するSignal-SGN(Spiking Graph Convolutional Network)を提案する。
実験により,提案モデルが既存のSNN法を精度で上回るだけでなく,学習時の計算記憶コストも低減できることがわかった。
論文 参考訳(メタデータ) (2024-08-03T07:47:16Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - RFC-Net: Learning High Resolution Global Features for Medical Image
Segmentation on a Computational Budget [4.712700480142554]
本稿では,圧縮された計算空間における高解像度グローバルな特徴を学習するReceptive Field Chain Network (RFC-Net)を提案する。
提案実験により,RFC-Net が Kvasir および CVC-ClinicDB のPolyp セグメンテーションのベンチマークにおいて,最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-02-13T06:52:47Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
本稿では,TransUNetの深層学習フレームワークに時間的特徴ブレンドを組み込んだ医療用CTビデオのセグメンテーションのための深層アーキテクチャであるVideo-TransUNetを提案する。
特に,提案手法は,ResNet CNNバックボーンによるフレーム表現,テンポラルコンテキストモジュールによるマルチフレーム機能ブレンディング,UNetベースの畳み込みデコナールアーキテクチャによる複数ターゲットの再構築,などを実現する。
論文 参考訳(メタデータ) (2022-08-17T14:28:58Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - Instance Explainable Temporal Network For Multivariate Timeseries [0.0]
本稿では,推論のインスタンスごとの分類決定において重要なチャネルを識別する新しいネットワーク(IETNet)を提案する。
IETNetは、時間的特徴抽出、変数選択、共同変数の相互作用を単一の学習フレームワークに組み合わせたエンドツーエンドネットワークである。
論文 参考訳(メタデータ) (2020-05-26T20:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。