Self-Supervised Spatial-Temporal Normality Learning for Time Series Anomaly Detection
- URL: http://arxiv.org/abs/2406.19770v1
- Date: Fri, 28 Jun 2024 09:17:58 GMT
- Title: Self-Supervised Spatial-Temporal Normality Learning for Time Series Anomaly Detection
- Authors: Yutong Chen, Hongzuo Xu, Guansong Pang, Hezhe Qiao, Yuan Zhou, Mingsheng Shang,
- Abstract summary: Time Series Anomaly Detection (TSAD) finds widespread applications across various domains such as financial markets, industrial production, and healthcare.
Most existing TSAD methods focus on modeling data from the temporal dimension, while ignoring the semantic information in the spatial dimension.
We introduce a novel approach, called Spatial-Temporal Normality learning (STEN)
- Score: 30.364392156075294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time Series Anomaly Detection (TSAD) finds widespread applications across various domains such as financial markets, industrial production, and healthcare. Its primary objective is to learn the normal patterns of time series data, thereby identifying deviations in test samples. Most existing TSAD methods focus on modeling data from the temporal dimension, while ignoring the semantic information in the spatial dimension. To address this issue, we introduce a novel approach, called Spatial-Temporal Normality learning (STEN). STEN is composed of a sequence Order prediction-based Temporal Normality learning (OTN) module that captures the temporal correlations within sequences, and a Distance prediction-based Spatial Normality learning (DSN) module that learns the relative spatial relations between sequences in a feature space. By synthesizing these two modules, STEN learns expressive spatial-temporal representations for the normal patterns hidden in the time series data. Extensive experiments on five popular TSAD benchmarks show that STEN substantially outperforms state-of-the-art competing methods. Our code is available at https://github.com/mala-lab/STEN.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
We propose a novel unsupervised anomaly detection method for time series data.
A long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space.
Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level.
arXiv Detail & Related papers (2023-03-06T17:52:35Z) - Exploiting Spatial-temporal Correlations for Video Anomaly Detection [7.336831373786849]
Video anomaly detection (VAD) remains a challenging task in the pattern recognition community due to the ambiguity and diversity of abnormal events.
We introduce a discriminator to perform adversarial learning with the ST-LSTM to enhance the learning capability.
Our method achieves competitive performance compared to the state-of-the-art methods with AUCs of 96.7%, 87.8%, and 73.1% on the UCSD2, CUHK Avenue, and ShanghaiTech, respectively.
arXiv Detail & Related papers (2022-11-02T02:13:24Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - TE-ESN: Time Encoding Echo State Network for Prediction Based on
Irregularly Sampled Time Series Data [6.221375620565451]
Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications.
We create a new model structure named Time Echo State Network (TE-ESN)
It is the first ESNs-based model that can process ISTS data.
Experiments on one chaos system and three real-world datasets show that TE-ESN performs better than all baselines.
arXiv Detail & Related papers (2021-05-02T08:00:46Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.