TE-ESN: Time Encoding Echo State Network for Prediction Based on
Irregularly Sampled Time Series Data
- URL: http://arxiv.org/abs/2105.00412v1
- Date: Sun, 2 May 2021 08:00:46 GMT
- Title: TE-ESN: Time Encoding Echo State Network for Prediction Based on
Irregularly Sampled Time Series Data
- Authors: Chenxi Sun and Shenda Hong and Moxian Song and Yanxiu Zhou and Yongyue
Sun and Derun Cai and Hongyan Li
- Abstract summary: Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications.
We create a new model structure named Time Echo State Network (TE-ESN)
It is the first ESNs-based model that can process ISTS data.
Experiments on one chaos system and three real-world datasets show that TE-ESN performs better than all baselines.
- Score: 6.221375620565451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern
in the real-world applications. For more accurate prediction, the methods had
better grasp more data characteristics. Different from ordinary time series,
ISTS is characterised with irregular time intervals of intra-series and
different sampling rates of inter-series. However, existing methods have
suboptimal predictions due to artificially introducing new dependencies in a
time series and biasedly learning relations among time series when modeling
these two characteristics. In this work, we propose a novel Time Encoding (TE)
mechanism. TE can embed the time information as time vectors in the complex
domain. It has the the properties of absolute distance and relative distance
under different sampling rates, which helps to represent both two
irregularities of ISTS. Meanwhile, we create a new model structure named Time
Encoding Echo State Network (TE-ESN). It is the first ESNs-based model that can
process ISTS data. Besides, TE-ESN can incorporate long short-term memories and
series fusion to grasp horizontal and vertical relations. Experiments on one
chaos system and three real-world datasets show that TE-ESN performs better
than all baselines and has better reservoir property.
Related papers
- Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Learning Gaussian Mixture Representations for Tensor Time Series
Forecasting [8.31607451942671]
We develop a novel TTS forecasting framework, which seeks to individually model each heterogeneity component implied in the time, the location, and the source variables.
Experiment results on two real-world TTS datasets verify the superiority of our approach compared with the state-of-the-art baselines.
arXiv Detail & Related papers (2023-06-01T06:50:47Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
We study time-series classification (TSC), a fundamental task of time-series data mining.
We propose Similarity-Aware Time-Series Classification (SimTSC), a framework that models similarity information with graph neural networks (GNNs)
arXiv Detail & Related papers (2022-01-05T02:14:57Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
We present a deep learning structural time series model which can handle correlated multivariate time series input.
The model explicitly learns/extracts the trend, seasonality, and event components.
We compare our model with several state-of-the-art methods through a comprehensive set of experiments on a variety of time series data sets.
arXiv Detail & Related papers (2020-01-02T18:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.