論文の概要: Rateless Stochastic Coding for Delay-constrained Semantic Communication
- arxiv url: http://arxiv.org/abs/2406.19804v1
- Date: Fri, 28 Jun 2024 10:27:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 04:50:50.575019
- Title: Rateless Stochastic Coding for Delay-constrained Semantic Communication
- Title(参考訳): 遅延制約付きセマンティック通信のためのレートレス確率符号化
- Authors: Cheng Peng, Rulong Wang, Yong Xiao,
- Abstract要約: 我々は、歪みと知覚制約を伴い、達成可能なジョイントソースチャネル符号レートに対して、新しい有限ブロック長境界を求める。
次に、レートレス符号化(RSC)と呼ばれる新しいJSCC符号化方式を提案する。
- 参考スコア(独自算出の注目度): 5.882972817816777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of joint source-channel coding with distortion and perception constraints from a rateless perspective, the purpose of which is to settle the balance between reliability (distortion/perception) and effectiveness (rate) of transmission over uncertain channels. We find a new finite-blocklength bound for the achievable joint source-channel code rate with the above two constraints. To achieve a superior rateless characteristic of JSCC coding, we perform multi-level optimization on various finite-blocklength codes. Based on these two, we then propose a new JSCC coding scheme called rateless stochastic coding (RSC). We experimentally demonstrate that the proposed RSC can achieve variable rates of transmission maintaining an excellent trade-off between distortion and perception.
- Abstract(参考訳): 本研究では、不確実なチャネル上での伝送の信頼性(歪み/知覚)と有効性(速度)のバランスを解消することを目的として、非定常的な視点から歪み・知覚制約を伴う連成音源チャネル符号化の問題点を考察する。
以上の2つの制約で達成可能なジョイントソースチャネル符号レートに対する新しい有限ブロック長境界を求める。
JSCC符号化の高速な特性を実現するため,様々な有限ブロック符号に対して多レベル最適化を行う。
そこで我々は,これら2つの手法に基づいて,RSC ( rateless stochastic coding) と呼ばれる新しいJSCC符号化手法を提案する。
提案したRCCは,歪みと知覚のトレードオフを良好に保ちながら,伝送速度の可変性を実証した。
関連論文リスト
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Vision Transformer-based Semantic Communications With Importance-Aware Quantization [13.328970689723096]
本稿では、無線画像伝送のための重要量化(IAQ)を用いた視覚変換器(ViT)に基づくセマンティック通信システムを提案する。
筆者らのIAQフレームワークは, エラーのない, 現実的な通信シナリオにおいて, 従来の画像圧縮手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-12-08T19:24:47Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
一般マルチインプット・マルチアウトプット(MIMO)干渉チャネルに対するインターフェクト・ロバスト・セマンティック通信(IRSC)方式を提案する。
このスキームはニューラルネットワーク(NN)に基づくトランシーバの開発を伴い、チャネル状態情報(CSI)を受信機のみ、または送信機と受信機の両方の端で統合する。
実験結果から、IRSC方式は干渉を緩和し、ベースラインアプローチより優れることを示す。
論文 参考訳(メタデータ) (2024-04-10T11:40:22Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
本稿では,実用的な意味コミュニケーションフレームワークを提案する。
2つの知性エージェント間の効果的な目標指向情報共有を可能にする。
数値的な評価は、少ないビット量で効率的な通信を実現するためのフレームワークの能力を示している。
論文 参考訳(メタデータ) (2023-11-30T03:36:19Z) - Optimizing state-discrimination receivers for continuous-variable
quantum key distribution over a wiretap channel [1.3108652488669736]
我々は、コヒーレント状態の第四次位相シフトキー(QPSK)を用いた連続可変量子鍵分布プロトコルに対処する。
我々は、唯一のチャネル損失を収集するために、盗聴可能な盗聴が制限される純粋損失量子通信路を考える。
論文 参考訳(メタデータ) (2023-06-20T12:26:06Z) - Deep Joint Source-Channel Coding with Iterative Source Error Correction [11.41076729592696]
深層学習に基づくジョイントソースチャネル符号(Deep J SCC)に対する反復的ソース誤り訂正(ISEC)復号法を提案する。
チャネルを通じて受信されたノイズワードに対して、Deep J SCCエンコーダとデコーダペアを使用して、コードを反復的に更新する。
提案手法は, チャネルノイズ特性がトレーニング時に使用するものと一致しない場合に, ベースラインよりも信頼性の高いソース再構成結果を生成する。
論文 参考訳(メタデータ) (2023-02-17T22:50:58Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
近年、ニューラルデコーダは古典的デコーダ技術に対する優位性を実証している。
最近の最先端のニューラルデコーダは複雑で、多くのレガシデコーダの重要な反復的スキームが欠如している。
本稿では,任意のブロック長の線形符号のソフトデコードにデノナイズ拡散モデルを適用することを提案する。
論文 参考訳(メタデータ) (2022-09-16T11:00:50Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission [132.72277692192878]
画像伝送には適応情報ボトルネック(IB)誘導ジョイントソースとチャネル符号化(AIB-JSCC)が提案されている。
AIB-JSCCの目的は、画像再構成品質を改善しながら伝送速度を下げることである。
実験の結果,AIB-JSCCは送信データ量を大幅に削減し,再現性を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-03-12T17:44:02Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
ローエンドエッジ装置は、ローカルデータサンプルの抽出された特徴ベクトルを強力なエッジサーバに送信して処理する。
帯域幅が限られているため、データを低遅延推論のための情報的かつコンパクトな表現に符号化することが重要である。
特徴抽出,ソース符号化,チャネル符号化を協調的に最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-02-08T12:53:32Z) - SNR-adaptive deep joint source-channel coding for wireless image
transmission [14.793908797250989]
本稿では, 自己エンコーダを用いた新しいディープジョイント・ソースチャネル符号化方式を提案する。
デコーダは、信号対雑音比(SNR)を推定し、それを用いて送信された画像を適応的に復号することができる。
論文 参考訳(メタデータ) (2021-01-30T10:30:04Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
画像が時間や頻度で徐々に層に伝達されるシナリオを考察する。
DeepJSCC-$l$は、畳み込みオートエンコーダを使用する革新的なソリューションである。
DeepJSCC-$l$は、低信号対雑音比(SNR)と小さな帯域幅規則の挑戦において、最先端のデジタルプログレッシブ伝送方式と同等の性能を持つ。
論文 参考訳(メタデータ) (2020-09-26T00:11:50Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
コミュニケーションのボトルネックは、大規模なディープラーニングにおいて重要な問題である。
非効率な分散問題に対する誤りフィードバックよりも優れた収束性を示す分散誤差フィードバック(DEF)アルゴリズムを提案する。
また、DEFよりも優れた境界を示すDEFの一般化を加速するDEFAを提案する。
論文 参考訳(メタデータ) (2020-04-11T03:50:59Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
本稿では、ニューラルジョイント・ソース・チャネル符号化方式の安定性と堅牢性を改善するために、Infomax Adversarial-Bit-Flip (IABF) と呼ばれる新しい正規化手法を提案する。
我々のIABFは、圧縮と誤り訂正のベンチマークの両方で最先端のパフォーマンスを達成でき、ベースラインをかなりの差で上回ることができる。
論文 参考訳(メタデータ) (2020-04-03T10:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。