Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory
- URL: http://arxiv.org/abs/2406.19827v1
- Date: Fri, 28 Jun 2024 11:06:46 GMT
- Title: Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory
- Authors: Wenliang Zhong, Haoyu Tang, Qinghai Zheng, Mingzhu Xu, Yupeng Hu, Liqiang Nie,
- Abstract summary: The rapid evolution of deep learning and large language models has led to an exponential growth in the demand for training data.
Matching Training Trajectories (MTT) has been a prominent approach, which replicates the training trajectory of an expert network on real data with a synthetic dataset.
We introduce a novel method called Matching Convexified Trajectory (MCT), which aims to provide better guidance for the student trajectory.
- Score: 53.37473225728298
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid evolution of deep learning and large language models has led to an exponential growth in the demand for training data, prompting the development of Dataset Distillation methods to address the challenges of managing large datasets. Among these, Matching Training Trajectories (MTT) has been a prominent approach, which replicates the training trajectory of an expert network on real data with a synthetic dataset. However, our investigation found that this method suffers from three significant limitations: 1. Instability of expert trajectory generated by Stochastic Gradient Descent (SGD); 2. Low convergence speed of the distillation process; 3. High storage consumption of the expert trajectory. To address these issues, we offer a new perspective on understanding the essence of Dataset Distillation and MTT through a simple transformation of the objective function, and introduce a novel method called Matching Convexified Trajectory (MCT), which aims to provide better guidance for the student trajectory. MCT leverages insights from the linearized dynamics of Neural Tangent Kernel methods to create a convex combination of expert trajectories, guiding the student network to converge rapidly and stably. This trajectory is not only easier to store, but also enables a continuous sampling strategy during distillation, ensuring thorough learning and fitting of the entire expert trajectory. Comprehensive experiments across three public datasets validate the superiority of MCT over traditional MTT methods.
Related papers
- Dataset Distillation by Automatic Training Trajectories [13.502303920701163]
We propose a new approach, Automatic Training Trajectories (ATT), which dynamically and adaptively adjusts trajectory length NS to address the Accumulated Mismatching Problem (AMP)
Our method outperforms existing methods particularly in tests involving cross-architectures.
arXiv Detail & Related papers (2024-07-19T12:27:11Z) - T-JEPA: A Joint-Embedding Predictive Architecture for Trajectory Similarity Computation [6.844357745770191]
Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications.
We propose T-JEPA, a self-supervised trajectory similarity method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning.
arXiv Detail & Related papers (2024-06-13T09:51:51Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - AST: Effective Dataset Distillation through Alignment with Smooth and
High-Quality Expert Trajectories [18.266786462036553]
We propose an effective DD framework named AST, standing for Alignment with Smooth and high-quality expert Trajectories.
We conduct extensive experiments on datasets of different scales, sizes, and resolutions.
arXiv Detail & Related papers (2023-10-16T16:13:53Z) - A Dimensional Structure based Knowledge Distillation Method for
Cross-Modal Learning [15.544134849816528]
We discover the correlation between feature discriminability and dimensional structure (DS) by analyzing and observing features extracted from simple and hard tasks.
We propose a novel cross-modal knowledge distillation (CMKD) method for better supervised cross-modal learning (CML) performance.
The proposed method enforces output features to be channel-wise independent and intermediate ones to be uniformly distributed, thereby learning semantically irrelevant features from the hard task to boost its accuracy.
arXiv Detail & Related papers (2023-06-28T07:29:26Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Pre-training General Trajectory Embeddings with Maximum Multi-view
Entropy Coding [36.18788551389281]
Trajectory embeddings can improve task performance but may incur high computational costs and face limited training data availability.
Existing trajectory embedding methods face difficulties in learning general embeddings due to biases towards certain downstream tasks.
We propose Multi-view Trajectory Entropy Coding Coding (MMTEC) for learning general comprehensive trajectory embeddings.
arXiv Detail & Related papers (2022-07-29T08:16:20Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z) - Adversarial Imitation Learning with Trajectorial Augmentation and
Correction [61.924411952657756]
We introduce a novel augmentation method which preserves the success of the augmented trajectories.
We develop an adversarial data augmented imitation architecture to train an imitation agent using synthetic experts.
Experiments show that our data augmentation strategy can improve accuracy and convergence time of adversarial imitation.
arXiv Detail & Related papers (2021-03-25T14:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.