T-JEPA: A Joint-Embedding Predictive Architecture for Trajectory Similarity Computation
- URL: http://arxiv.org/abs/2406.12913v1
- Date: Thu, 13 Jun 2024 09:51:51 GMT
- Title: T-JEPA: A Joint-Embedding Predictive Architecture for Trajectory Similarity Computation
- Authors: Lihuan Li, Hao Xue, Yang Song, Flora Salim,
- Abstract summary: Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications.
We propose T-JEPA, a self-supervised trajectory similarity method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning.
- Score: 6.844357745770191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications such as traffic management, wildlife tracking, and location-based services. Modern methods often apply deep learning techniques to approximate heuristic metrics but struggle to learn more robust and generalized representations from the vast amounts of unlabeled trajectory data. Recent approaches focus on self-supervised learning methods such as contrastive learning, which have made significant advancements in trajectory representation learning. However, contrastive learning-based methods heavily depend on manually pre-defined data augmentation schemes, limiting the diversity of generated trajectories and resulting in learning from such variations in 2D Euclidean space, which prevents capturing high-level semantic variations. To address these limitations, we propose T-JEPA, a self-supervised trajectory similarity computation method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning. T-JEPA samples and predicts trajectory information in representation space, enabling the model to infer the missing components of trajectories at high-level semantics without relying on domain knowledge or manual effort. Extensive experiments conducted on three urban trajectory datasets and two Foursquare datasets demonstrate the effectiveness of T-JEPA in trajectory similarity computation.
Related papers
- Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory [53.37473225728298]
The rapid evolution of deep learning and large language models has led to an exponential growth in the demand for training data.
Matching Training Trajectories (MTT) has been a prominent approach, which replicates the training trajectory of an expert network on real data with a synthetic dataset.
We introduce a novel method called Matching Convexified Trajectory (MCT), which aims to provide better guidance for the student trajectory.
arXiv Detail & Related papers (2024-06-28T11:06:46Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Learning Representative Trajectories of Dynamical Systems via
Domain-Adaptive Imitation [0.0]
We propose DATI, a deep reinforcement learning agent designed for domain-adaptive trajectory imitation.
Our experiments show that DATI outperforms baseline methods for imitation learning and optimal control in this setting.
Its generalization to a real-world scenario is shown through the discovery of abnormal motion patterns in maritime traffic.
arXiv Detail & Related papers (2023-04-19T15:53:48Z) - Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics [30.9735101687326]
Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management.
Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited.
We propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START.
arXiv Detail & Related papers (2022-11-17T13:14:47Z) - Contrastive Trajectory Similarity Learning with Dual-Feature Attention [24.445998309807965]
Tray similarity measures act as query predicates in trajectory databases.
We propose a contrastive learning-based trajectory modelling method named TrajCL.
TrajCL is consistently and significantly more accurate and faster than the state-of-the-art trajectory similarity measures.
arXiv Detail & Related papers (2022-10-11T05:25:14Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - ST2Vec: Spatio-Temporal Trajectory Similarity Learning in Road Networks [27.452831603278565]
We propose ST2Vec, a trajectory-learning based architecture that considers fine-grained spatial and temporal between pairs of trajectories.
Inspired by curriculum concept, ST2Vec employs curriculum learning for model optimization to improve both convergence and effectiveness.
An experimental study offers evidence that ST2Vec outperforms all state-of-the-art competitors substantially in terms of effectiveness, efficiency, and robustness.
arXiv Detail & Related papers (2021-12-17T06:18:04Z) - An Unsupervised Learning Method with Convolutional Auto-Encoder for
Vessel Trajectory Similarity Computation [13.003061329076775]
We propose an unsupervised learning method which automatically extracts low-dimensional features through a convolutional auto-encoder (CAE)
Based on the massive vessel trajectories collected, the CAE can learn the low-dimensional representations of informative trajectory images in an unsupervised manner.
The proposed method largely outperforms traditional trajectory similarity methods in terms of efficiency and effectiveness.
arXiv Detail & Related papers (2021-01-10T04:42:11Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.