論文の概要: Koopman based trajectory model and computation offloading for high mobility paradigm in ISAC enabled IoT system
- arxiv url: http://arxiv.org/abs/2406.19871v1
- Date: Fri, 28 Jun 2024 12:26:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 16:50:10.589115
- Title: Koopman based trajectory model and computation offloading for high mobility paradigm in ISAC enabled IoT system
- Title(参考訳): ISAC対応IoTシステムにおける高モビリティパラダイムのためのクープマンベース軌道モデルと計算オフロード
- Authors: Minh-Tuan Tran,
- Abstract要約: 6G技術の進歩は、モバイルの技術進化に急速に浸透しつつある。
モバイル通信における統合されたセンシングと通信は、軌道予測と処理遅延を改善する可能性がある。
本研究では,多ユーザネットワークにおける資源配分最適化手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User experience on mobile devices is constrained by limited battery capacity and processing power, but 6G technology advancements are diving rapidly into mobile technical evolution. Mobile edge computing (MEC) offers a solution, offloading computationally intensive tasks to edge cloud servers, reducing battery drain compared to local processing. The upcoming integrated sensing and communication in mobile communication may improve the trajectory prediction and processing delays. This study proposes a greedy resource allocation optimization strategy for multi-user networks to minimize aggregate energy usage. Numerical results show potential improvement at 33\% for every 1000 iteration. Addressing prediction model division and velocity accuracy issues is crucial for better results. A plan for further improvement and achieving objectives is outlined for the upcoming work phase.
- Abstract(参考訳): モバイルデバイスのユーザエクスペリエンスは、バッテリ容量と処理能力の制限によって制限されている。
モバイルエッジコンピューティング(MEC)は、計算集約的なタスクをエッジクラウドサーバにオフロードするソリューションを提供する。
モバイル通信における統合されたセンシングと通信は、軌道予測と処理遅延を改善する可能性がある。
本研究では,多ユーザネットワークにおける資源配分最適化手法を提案する。
数値的な結果は、1000回毎に33\%の潜在的な改善を示す。
より良い結果を得るためには,予測モデルの分割と速度精度の問題に対処することが重要である。
今後の作業フェーズについて、さらなる改善と目標達成の計画を概説する。
関連論文リスト
- Reinforcement Learning Controlled Adaptive PSO for Task Offloading in IIoT Edge Computing [0.0]
産業用IoT(Industrial Internet of Things)アプリケーションは、低レイテンシで重いデータ負荷を処理するために、効率的なタスクオフロードを要求する。
モバイルエッジコンピューティング(MEC)は、レイテンシとサーバ負荷を低減するために、デバイスに計算を近づける。
本稿では,適応粒子群最適化(APSO)と強化学習,特にソフトアクタ批判(SAC)を組み合わせた新しい解を提案する。
論文 参考訳(メタデータ) (2025-01-25T13:01:54Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Resource Allocation for Stable LLM Training in Mobile Edge Computing [11.366306689957353]
本稿では,モバイルユーザとエッジサーバを統合し,リソース割り当てを最適化する協調トレーニングフレームワークについて検討する。
学習中のエネルギー消費と遅延の総量を最小限に抑えるために,多目的最適化問題を定式化する。
また,モデルの安定性向上を目的関数に組み込むことにより,モデル性能の不安定性の共通問題にも対処する。
論文 参考訳(メタデータ) (2024-09-30T12:36:27Z) - Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning [46.98737813782529]
本稿では,MEGCシステムにおける共同通信,計算,AIGC資源割り当て問題について検討する。
レイテンシの問題が最初に定式化され、モバイルユーザのサービス品質が向上する。
そこで本研究では,これを効率的に解くための深層強化学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-04T14:53:44Z) - Predictive Handover Strategy in 6G and Beyond: A Deep and Transfer Learning Approach [11.44410301488549]
本稿では,将来的なサービスセル予測のためのディープラーニングに基づくアルゴリズムを提案する。
我々のフレームワークはO-RAN仕様に準拠しており、Near-Real-Time RAN Intelligent Controllerにデプロイできます。
論文 参考訳(メタデータ) (2024-04-11T20:30:36Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Communication Efficient Federated Learning with Energy Awareness over
Wireless Networks [51.645564534597625]
フェデレートラーニング(FL)では、パラメータサーバとモバイルデバイスが無線リンク上でトレーニングパラメータを共有する。
我々は、勾配の符号のみを交換するSignSGDという考え方を採用する。
2つの最適化問題を定式化し、学習性能を最適化する。
FLでは非常に不均一な方法でモバイルデバイスに分散される可能性があることを考慮し,手話に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-15T21:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。