論文の概要: Resource Allocation for Stable LLM Training in Mobile Edge Computing
- arxiv url: http://arxiv.org/abs/2409.20247v1
- Date: Mon, 30 Sep 2024 12:36:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 11:58:29.541544
- Title: Resource Allocation for Stable LLM Training in Mobile Edge Computing
- Title(参考訳): モバイルエッジコンピューティングにおける安定LLMトレーニングのための資源配分
- Authors: Chang Liu, Jun Zhao,
- Abstract要約: 本稿では,モバイルユーザとエッジサーバを統合し,リソース割り当てを最適化する協調トレーニングフレームワークについて検討する。
学習中のエネルギー消費と遅延の総量を最小限に抑えるために,多目的最適化問題を定式化する。
また,モデルの安定性向上を目的関数に組み込むことにより,モデル性能の不安定性の共通問題にも対処する。
- 参考スコア(独自算出の注目度): 11.366306689957353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As mobile devices increasingly become focal points for advanced applications, edge computing presents a viable solution to their inherent computational limitations, particularly in deploying large language models (LLMs). However, despite the advancements in edge computing, significant challenges remain in efficient training and deploying LLMs due to the computational demands and data privacy concerns associated with these models. This paper explores a collaborative training framework that integrates mobile users with edge servers to optimize resource allocation, thereby enhancing both performance and efficiency. Our approach leverages parameter-efficient fine-tuning (PEFT) methods, allowing mobile users to adjust the initial layers of the LLM while edge servers handle the more demanding latter layers. Specifically, we formulate a multi-objective optimization problem to minimize the total energy consumption and delay during training. We also address the common issue of instability in model performance by incorporating stability enhancements into our objective function. Through novel fractional programming technique, we achieve a stationary point for the formulated problem. Simulations demonstrate that our method reduces the energy consumption as well as the latency, and increases the reliability of LLMs across various mobile settings.
- Abstract(参考訳): モバイルデバイスが先進的なアプリケーションに焦点を移すにつれ、エッジコンピューティングは、特に大規模言語モデル(LLM)のデプロイにおいて、それら固有の計算制限に対する実行可能なソリューションを提供する。
しかし、エッジコンピューティングの進歩にもかかわらず、これらのモデルに関連する計算要求とデータプライバシの懸念により、LLMの効率的なトレーニングとデプロイには大きな課題が残っている。
本稿では,モバイルユーザとエッジサーバを連携させてリソース割り当てを最適化し,パフォーマンスと効率を両立させる,協調的なトレーニングフレームワークについて検討する。
提案手法では,パラメータ効率のよい微細チューニング(PEFT)手法を用いて,エッジサーバがより要求の高い後者のレイヤを処理している間に,モバイルユーザがLLMの初期レイヤを調整できる。
具体的には,多目的最適化問題を定式化し,訓練時の総エネルギー消費と遅延を最小化する。
また,モデルの安定性向上を目的関数に組み込むことにより,モデル性能の不安定性の共通問題にも対処する。
新たな分数計画法により,定式化問題に対する定常点を実現する。
シミュレーションにより,本手法は遅延とともに省エネ化を図り,様々なモバイル環境におけるLCMの信頼性を高めた。
関連論文リスト
- eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
大言語モデル(LLMs)は人工知能(AI)の転換期を告げる
本稿では, LLM推論の運用効率と費用対効果を高める効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T22:50:02Z) - Split Federated Learning Over Heterogeneous Edge Devices: Algorithm and Optimization [7.013344179232109]
Split Learning(SL)は、リソース制約のあるデバイスが生データを共有せずにモデルをトレーニングできるようにする、有望なコラボレーティブ機械学習アプローチである。
現在のSLアルゴリズムは、トレーニング効率の限界に直面し、長時間のレイテンシに悩まされている。
本稿では、リソース制約のあるクライアントが、パーソナライズされたクライアントサイドモデルを並列にトレーニングできる、異種分散フェデレーションラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-21T07:46:01Z) - Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
近年のLarge Language Models (LLM) 開発において,"Bigger the Better" が主流となっている。
本稿では、リソース制約のあるデバイスに対して、正確かつ効率的なSLM(Small Language Models)を設計する上での課題に対処し、"less is more"パラダイムについて考察する。
論文 参考訳(メタデータ) (2024-02-26T18:59:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - MCDS: AI Augmented Workflow Scheduling in Mobile Edge Cloud Computing
Systems [12.215537834860699]
近年,エッジコンピューティングプラットフォームの低応答時間を利用してアプリケーション品質・オブ・サービス(QoS)を最適化するスケジューリング手法が提案されている。
本稿では,Deep Surrogate Models を用いたモンテカルロ学習を用いて,モバイルエッジクラウドコンピューティングシステムにおけるワークフローアプリケーションを効率的にスケジューリングする手法を提案する。
論文 参考訳(メタデータ) (2021-12-14T10:00:01Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning(MEL)は、エッジデバイス上で機械学習(ML)モデルの分散トレーニングを特徴とする、協調学習パラダイムである。
MELでは、異なるデータセットで複数の学習タスクが共存する可能性がある。
本稿では, エネルギー消費, 精度, 解複雑性のトレードオフを容易にする軽量なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-02T07:37:10Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
我々は、エッジデバイスとクラウド間でCNNを実行することは、リソース制約のある最適化問題を解決することと同義であると主張している。
実世界のエッジデバイスでの実験では、LMOSはエッジで異なるCNNモデルの実行可能な実行を保証する。
論文 参考訳(メタデータ) (2021-07-19T19:39:56Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。