Koopman based trajectory model and computation offloading for high mobility paradigm in ISAC enabled IoT system
- URL: http://arxiv.org/abs/2406.19871v1
- Date: Fri, 28 Jun 2024 12:26:28 GMT
- Title: Koopman based trajectory model and computation offloading for high mobility paradigm in ISAC enabled IoT system
- Authors: Minh-Tuan Tran,
- Abstract summary: 6G technology advancements are diving rapidly into mobile technical evolution.
The upcoming integrated sensing and communication in mobile communication may improve the trajectory prediction and processing delays.
This study proposes a greedy resource allocation optimization strategy for multi-user networks to minimize aggregate energy usage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User experience on mobile devices is constrained by limited battery capacity and processing power, but 6G technology advancements are diving rapidly into mobile technical evolution. Mobile edge computing (MEC) offers a solution, offloading computationally intensive tasks to edge cloud servers, reducing battery drain compared to local processing. The upcoming integrated sensing and communication in mobile communication may improve the trajectory prediction and processing delays. This study proposes a greedy resource allocation optimization strategy for multi-user networks to minimize aggregate energy usage. Numerical results show potential improvement at 33\% for every 1000 iteration. Addressing prediction model division and velocity accuracy issues is crucial for better results. A plan for further improvement and achieving objectives is outlined for the upcoming work phase.
Related papers
- Resource Allocation for Stable LLM Training in Mobile Edge Computing [11.366306689957353]
This paper explores a collaborative training framework that integrates mobile users with edge servers to optimize resource allocation.
We formulate a multi-objective optimization problem to minimize the total energy consumption and delay during training.
We also address the common issue of instability in model performance by incorporating stability enhancements into our objective function.
arXiv Detail & Related papers (2024-09-30T12:36:27Z) - Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning [46.98737813782529]
We investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system.
A latency problem is first formulated to enhance the quality of service for mobile users.
We propose a new deep reinforcement learning-based algorithm to solve it efficiently.
arXiv Detail & Related papers (2024-08-04T14:53:44Z) - Predictive Handover Strategy in 6G and Beyond: A Deep and Transfer Learning Approach [11.44410301488549]
We propose a deep learning based algorithm for predicting the future serving cell.
Our framework complies with the O-RAN specifications and can be deployed in a Near-Real-Time RAN Intelligent Controller.
arXiv Detail & Related papers (2024-04-11T20:30:36Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage.
Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
arXiv Detail & Related papers (2023-12-11T08:36:27Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource
Constrained IoT Systems [12.427821850039448]
We propose a novel split computing approach based on slimmable ensemble encoders.
The key advantage of our design is the ability to adapt computational load and transmitted data size in real-time with minimal overhead and time.
Our model outperforms existing solutions in terms of compression efficacy and execution time, especially in the context of weak mobile devices.
arXiv Detail & Related papers (2023-06-22T06:33:12Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
federated learning (FL) over massive mobile edge devices opens new horizons for numerous intelligent mobile applications.
FL imposes huge communication and computation burdens on participating devices due to periodical global synchronization and continuous local training.
We develop a convergence-guaranteed FL algorithm enabling flexible communication compression.
arXiv Detail & Related papers (2020-12-22T02:54:18Z) - Communication Efficient Federated Learning with Energy Awareness over
Wireless Networks [51.645564534597625]
In federated learning (FL), the parameter server and the mobile devices share the training parameters over wireless links.
We adopt the idea of SignSGD in which only the signs of the gradients are exchanged.
Two optimization problems are formulated and solved, which optimize the learning performance.
Considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a sign-based algorithm is proposed.
arXiv Detail & Related papers (2020-04-15T21:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.