Predictive Handover Strategy in 6G and Beyond: A Deep and Transfer Learning Approach
- URL: http://arxiv.org/abs/2404.08113v1
- Date: Thu, 11 Apr 2024 20:30:36 GMT
- Title: Predictive Handover Strategy in 6G and Beyond: A Deep and Transfer Learning Approach
- Authors: Ioannis Panitsas, Akrit Mudvari, Ali Maatouk, Leandros Tassiulas,
- Abstract summary: We propose a deep learning based algorithm for predicting the future serving cell.
Our framework complies with the O-RAN specifications and can be deployed in a Near-Real-Time RAN Intelligent Controller.
- Score: 11.44410301488549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next-generation cellular networks will evolve into more complex and virtualized systems, employing machine learning for enhanced optimization and leveraging higher frequency bands and denser deployments to meet varied service demands. This evolution, while bringing numerous advantages, will also pose challenges, especially in mobility management, as it will increase the overall number of handovers due to smaller coverage areas and the higher signal attenuation. To address these challenges, we propose a deep learning based algorithm for predicting the future serving cell utilizing sequential user equipment measurements to minimize the handover failures and interruption time. Our algorithm enables network operators to dynamically adjust handover triggering events or incorporate UAV base stations for enhanced coverage and capacity, optimizing network objectives like load balancing and energy efficiency through transfer learning techniques. Our framework complies with the O-RAN specifications and can be deployed in a Near-Real-Time RAN Intelligent Controller as an xApp leveraging the E2SM-KPM service model. The evaluation results demonstrate that our algorithm achieves a 92% accuracy in predicting future serving cells with high probability. Finally, by utilizing transfer learning, our algorithm significantly reduces the retraining time by 91% and 77% when new handover trigger decisions or UAV base stations are introduced to the network dynamically.
Related papers
- Koopman based trajectory model and computation offloading for high mobility paradigm in ISAC enabled IoT system [0.0]
6G technology advancements are diving rapidly into mobile technical evolution.
The upcoming integrated sensing and communication in mobile communication may improve the trajectory prediction and processing delays.
This study proposes a greedy resource allocation optimization strategy for multi-user networks to minimize aggregate energy usage.
arXiv Detail & Related papers (2024-06-28T12:26:28Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Cellular traffic offloading via Opportunistic Networking with
Reinforcement Learning [0.5758073912084364]
We propose an adaptive offloading solution based on the Reinforcement Learning framework.
We evaluate and compare the performance of two well-known learning algorithms: Actor-Critic and Q-Learning.
Our solution achieves a higher level of offloading with respect to other state-of-the-art approaches.
arXiv Detail & Related papers (2021-10-01T13:34:12Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - Deep Reinforcement Learning Based Mobile Edge Computing for Intelligent
Internet of Things [10.157016543999045]
We devise the system by proposing the offloading strategy intelligently through the deep reinforcement learning algorithm.
Deep Q-Network is used to automatically learn the offloading decision in order to optimize the system performance.
A neural network (NN) is trained to predict the offloading action, where the training data is generated from the environmental system.
In particular, the system cost of latency and energy consumption can be reduced significantly by the proposed deep reinforcement learning based algorithm.
arXiv Detail & Related papers (2020-08-01T11:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.