Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud Computing
- URL: http://arxiv.org/abs/2406.19964v2
- Date: Tue, 9 Jul 2024 09:40:52 GMT
- Title: Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud Computing
- Authors: Xirong Ma, Chuan Li, Yuchang Hu, Yunting Tao, Yali Jiang, Yanbin Li, Fanyu Kong, Chunpeng Ge,
- Abstract summary: Homomorphic encryption (HE) is one solution for safeguarding data privacy, enabling encrypted data to be processed securely in the cloud.
We propose an outsourced decryption protocol for the prevailing RLWE-based fully homomorphic encryption schemes.
Our experiments demonstrate that the proposed protocol achieves up to a $67%$ acceleration in the client's local decryption, accompanied by a $50%$ reduction in space usage.
- Score: 3.125865379632205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for processing vast volumes of data has surged dramatically due to the advancement of machine learning technology. Large-scale data processing necessitates substantial computational resources, prompting individuals and enterprises to turn to cloud services. Accompanying this trend is a growing concern regarding data leakage and misuse. Homomorphic encryption (HE) is one solution for safeguarding data privacy, enabling encrypted data to be processed securely in the cloud. However, the encryption and decryption routines of some HE schemes require considerable computational resources, presenting non-trivial work for clients. In this paper, we propose an outsourced decryption protocol for the prevailing RLWE-based fully homomorphic encryption schemes. The protocol splits the original decryption into two routines, with the computationally intensive part executed remotely by the cloud. Its security relies on an invariant of the NTRU-search problem with a newly designed blinding key distribution. Cryptographic analyses are conducted to configure protocol parameters across varying security levels. Our experiments demonstrate that the proposed protocol achieves up to a $67\%$ acceleration in the client's local decryption, accompanied by a $50\%$ reduction in space usage.
Related papers
- DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data [14.21750921409931]
We introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of Fully Homomorphic Encryption (FHE)
DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE.
arXiv Detail & Related papers (2024-10-19T21:19:39Z) - CCA-Secure Key-Aggregate Proxy Re-Encryption for Secure Cloud Storage [1.4610685586329806]
Data protection in cloud storage is the key to the survival of the cloud industry.
Proxy Re-Encryption schemes enable users to convert their ciphertext into others ciphertext by using a re-encryption key.
Recently, we lowered the key storage cost of C-PREs to constant size and proposed the first Key-Aggregate Proxy Re-Encryption scheme.
arXiv Detail & Related papers (2024-10-10T17:02:49Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud [0.0]
encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues.
Sanyashi et al. proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud.
We give an efficient algorithm and empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA)
arXiv Detail & Related papers (2024-03-14T03:53:01Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - Secure Machine Learning in the Cloud Using One Way Scrambling by
Deconvolution [2.9692754277987286]
Cloud-based machine learning services (CMLS) enable organizations to take advantage of advanced models that are pre-trained on large quantities of data.
Asymmetric encryption requires the data to be decrypted in the cloud, while Homomorphic encryption is often too slow and difficult to implement.
We propose One Way Scrambling by Deconvolution (OWSD), a deconvolution-based scrambling framework that offers the advantages of Homomorphic encryption at a fraction of the computational overhead.
arXiv Detail & Related papers (2021-11-04T19:46:41Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.