Into the Unknown: Generating Geospatial Descriptions for New Environments
- URL: http://arxiv.org/abs/2406.19967v1
- Date: Fri, 28 Jun 2024 14:56:21 GMT
- Title: Into the Unknown: Generating Geospatial Descriptions for New Environments
- Authors: Tzuf Paz-Argaman, John Palowitch, Sayali Kulkarni, Reut Tsarfaty, Jason Baldridge,
- Abstract summary: Rendezvous task requires reasoning over allocentric spatial relationships.
Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text.
We propose a large-scale augmentation method for generating high-quality synthetic data for new environments.
- Score: 18.736071151303726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Similar to vision-and-language navigation (VLN) tasks that focus on bridging the gap between vision and language for embodied navigation, the new Rendezvous (RVS) task requires reasoning over allocentric spatial relationships (independent of the observer's viewpoint) using non-sequential navigation instructions and maps. However, performance substantially drops in new environments with no training data. Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text resulting in low geolocation resolution. We propose a large-scale augmentation method for generating high-quality synthetic data for new environments using readily available geospatial data. Our method constructs a grounded knowledge-graph, capturing entity relationships. Sampled entities and relations (`shop north of school') generate navigation instructions via (i) generating numerous templates using context-free grammar (CFG) to embed specific entities and relations; (ii) feeding the entities and relation into a large language model (LLM) for instruction generation. A comprehensive evaluation on RVS, showed that our approach improves the 100-meter accuracy by 45.83% on unseen environments. Furthermore, we demonstrate that models trained with CFG-based augmentation achieve superior performance compared with those trained with LLM-based augmentation, both in unseen and seen environments. These findings suggest that the potential advantages of explicitly structuring spatial information for text-based geospatial reasoning in previously unknown, can unlock data-scarce scenarios.
Related papers
- FedNE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction [47.336599393600046]
textscFedNE is a novel approach that integrates the textscFedAvg framework with the contrastive NE technique.
We conduct comprehensive experiments on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-17T19:23:24Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Geode: A Zero-shot Geospatial Question-Answering Agent with Explicit Reasoning and Precise Spatio-Temporal Retrieval [0.0]
We introduce a pioneering system designed to tackle zero-shot geospatial question-answering tasks with high precision.
Our approach represents a significant improvement in addressing the limitations of current large language models.
arXiv Detail & Related papers (2024-06-26T21:59:54Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
Navigating drones through natural language commands remains challenging due to the dearth of accessible multi-modal datasets.
We introduce GeoText-1652, a new natural language-guided geo-localization benchmark.
This dataset is systematically constructed through an interactive human-computer process.
arXiv Detail & Related papers (2023-11-21T17:52:30Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - Nearest Neighbor-Based Contrastive Learning for Hyperspectral and LiDAR
Data Classification [45.026868970899514]
We propose a Nearest Neighbor-based Contrastive Learning Network (NNCNet) to learn discriminative feature representations.
Specifically, we propose a nearest neighbor-based data augmentation scheme to use enhanced semantic relationships among nearby regions.
In addition, we design a bilinear attention module to exploit the second-order and even high-order feature interactions between the HSI and LiDAR data.
arXiv Detail & Related papers (2023-01-09T13:43:54Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes.
To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains.
We consider the suitability of this data not just on its own but also as a source of data in combination with demographic features, thus providing a realistic use case for the embeddings.
arXiv Detail & Related papers (2021-12-02T17:10:52Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
We propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet)
ERPCNet extracts and aggregates localities based on semantic relevance and visual correlations without human-annotated regions.
It not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization.
arXiv Detail & Related papers (2021-11-03T11:13:13Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
We show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks.
We propose novel training methods that exploit the spatially aligned structure of remote sensing data.
Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing.
arXiv Detail & Related papers (2020-11-19T17:29:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.