Map2Text: New Content Generation from Low-Dimensional Visualizations
- URL: http://arxiv.org/abs/2412.18673v1
- Date: Tue, 24 Dec 2024 20:16:13 GMT
- Title: Map2Text: New Content Generation from Low-Dimensional Visualizations
- Authors: Xingjian Zhang, Ziyang Xiong, Shixuan Liu, Yutong Xie, Tolga Ergen, Dongsub Shim, Hua Xu, Honglak Lee, Qiaozhu Me,
- Abstract summary: We introduce Map2Text, a novel task that translates spatial coordinates within low-dimensional visualizations into new, coherent, and accurately aligned textual content.
This allows users to explore and navigate undiscovered information embedded in these spatial layouts interactively and intuitively.
- Score: 60.02149343347818
- License:
- Abstract: Low-dimensional visualizations, or "projection maps" of datasets, are widely used across scientific research and creative industries as effective tools for interpreting large-scale and complex information. These visualizations not only support understanding existing knowledge spaces but are often used implicitly to guide exploration into unknown areas. While powerful methods like TSNE or UMAP can create such visual maps, there is currently no systematic way to leverage them for generating new content. To bridge this gap, we introduce Map2Text, a novel task that translates spatial coordinates within low-dimensional visualizations into new, coherent, and accurately aligned textual content. This allows users to explore and navigate undiscovered information embedded in these spatial layouts interactively and intuitively. To evaluate the performance of Map2Text methods, we propose Atometric, an evaluation metric that provides a granular assessment of logical coherence and alignment of the atomic statements in the generated texts. Experiments conducted across various datasets demonstrate the versatility of Map2Text in generating scientific research hypotheses, crafting synthetic personas, and devising strategies for testing large language models. Our findings highlight the potential of Map2Text to unlock new pathways for interacting with and navigating large-scale textual datasets, offering a novel framework for spatially guided content generation and discovery.
Related papers
- HPix: Generating Vector Maps from Satellite Images [0.0]
We propose a novel method called HPix, which utilizes modified Generative Adversarial Networks (GANs) to generate vector tile map from satellite images.
Through empirical evaluations, our proposed approach showcases its effectiveness in producing highly accurate and visually captivating vector tile maps.
We further extend our study's application to include mapping of road intersections and building footprints cluster based on their area.
arXiv Detail & Related papers (2024-07-18T16:54:02Z) - Into the Unknown: Generating Geospatial Descriptions for New Environments [18.736071151303726]
Rendezvous task requires reasoning over allocentric spatial relationships.
Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text.
We propose a large-scale augmentation method for generating high-quality synthetic data for new environments.
arXiv Detail & Related papers (2024-06-28T14:56:21Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Towards Improving Document Understanding: An Exploration on
Text-Grounding via MLLMs [96.54224331778195]
We present a text-grounding document understanding model, termed TGDoc, which enhances MLLMs with the ability to discern the spatial positioning of text within images.
We formulate instruction tuning tasks including text detection, recognition, and spotting to facilitate the cohesive alignment between the visual encoder and large language model.
Our method achieves state-of-the-art performance across multiple text-rich benchmarks, validating the effectiveness of our method.
arXiv Detail & Related papers (2023-11-22T06:46:37Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - Core Building Blocks: Next Gen Geo Spatial GPT Application [0.0]
This paper introduces MapGPT, which aims to bridge the gap between natural language understanding and spatial data analysis.
MapGPT enables more accurate and contextually aware responses to location-based queries.
arXiv Detail & Related papers (2023-10-17T06:59:31Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
Visual grounding (VG) aims to establish fine-grained alignment between vision and language.
Most existing VG datasets are constructed using simple description texts.
We propose a novel benchmark of underlineScene underlineKnowledge-guided underlineVisual underlineGrounding.
arXiv Detail & Related papers (2023-07-21T13:06:02Z) - Let the Chart Spark: Embedding Semantic Context into Chart with
Text-to-Image Generative Model [7.587729429265939]
Pictorial visualization seamlessly integrates data and semantic context into visual representation.
We propose ChartSpark, a novel system that embeds semantic context into chart based on text-to-image generative model.
We develop an interactive visual interface that integrates a text analyzer, editing module, and evaluation module to enable users to generate, modify, and assess pictorial visualizations.
arXiv Detail & Related papers (2023-04-28T05:18:30Z) - Mapping Research Trajectories [0.0]
We propose a principled approach for emphmapping research trajectories, which is applicable to all kinds of scientific entities.
Our visualizations depict the research topics of entities over time in a straightforward interpr. manner.
In a practical demonstrator application, we exemplify the proposed approach on a publication corpus from machine learning.
arXiv Detail & Related papers (2022-04-25T13:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.