NetNN: Neural Intrusion Detection System in Programmable Networks
- URL: http://arxiv.org/abs/2406.19990v1
- Date: Fri, 28 Jun 2024 15:20:46 GMT
- Title: NetNN: Neural Intrusion Detection System in Programmable Networks
- Authors: Kamran Razavi, Shayan Davari Fard, George Karlos, Vinod Nigade, Max Mühlhäuser, Lin Wang,
- Abstract summary: This paper introduces NetNN, a novel DNN-based intrusion detection system that runs completely in the network data plane to achieve low latency.
We show that NetNN can improve the intrusion detection accuracy to 99% while meeting the real-time requirement.
- Score: 22.230214658519515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of deep learning has led to various successful attempts to apply deep neural networks (DNNs) for important networking tasks such as intrusion detection. Yet, running DNNs in the network control plane, as typically done in existing proposals, suffers from high latency that impedes the practicality of such approaches. This paper introduces NetNN, a novel DNN-based intrusion detection system that runs completely in the network data plane to achieve low latency. NetNN adopts raw packet information as input, avoiding complicated feature engineering. NetNN mimics the DNN dataflow execution by mapping DNN parts to a network of programmable switches, executing partial DNN computations on individual switches, and generating packets carrying intermediate execution results between these switches. We implement NetNN in P4 and demonstrate the feasibility of such an approach. Experimental results show that NetNN can improve the intrusion detection accuracy to 99\% while meeting the real-time requirement.
Related papers
- Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Robust and Lossless Fingerprinting of Deep Neural Networks via Pooled
Membership Inference [17.881686153284267]
Deep neural networks (DNNs) have already achieved great success in a lot of application areas and brought profound changes to our society.
How to protect the intellectual property (IP) of DNNs against infringement is one of the most important yet very challenging topics.
This paper proposes a novel technique called emphpooled membership inference (PMI) so as to protect the IP of the DNN models.
arXiv Detail & Related papers (2022-09-09T04:06:29Z) - NINNs: Nudging Induced Neural Networks [0.0]
New algorithms called nudging induced neural networks (NINNs) to control and improve the accuracy of deep neural networks (DNNs)
NINNs work by adding a feedback control term to the forward propagation of the network.
Rigorous convergence analysis is established for NINNs.
arXiv Detail & Related papers (2022-03-15T14:29:26Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
This paper proposes a novel learning approach to obtain sparse fully connected layers in neural networks (NNs) automatically.
We design a switcher neural network (SNN) to optimize the structure of the task neural network (TNN)
arXiv Detail & Related papers (2021-03-26T11:29:40Z) - Deep Serial Number: Computational Watermarking for DNN Intellectual
Property Protection [53.40245698216239]
DSN (Deep Serial Number) is a watermarking algorithm designed specifically for deep neural networks (DNNs)
Inspired by serial numbers in safeguarding conventional software IP, we propose the first implementation of serial number embedding within DNNs.
arXiv Detail & Related papers (2020-11-17T21:42:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks (SNNs) have come under the spotlight for machine learning based applications.
We show our methodology for the design of an SNN that achieves nearly the same accuracy results as its corresponding Deep Neural Networks (DNNs)
Our SNN achieves 89.64% classification accuracy and occupies only 37 Loihi cores.
arXiv Detail & Related papers (2020-05-16T17:00:10Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.