Robust and Lossless Fingerprinting of Deep Neural Networks via Pooled
Membership Inference
- URL: http://arxiv.org/abs/2209.04113v1
- Date: Fri, 9 Sep 2022 04:06:29 GMT
- Title: Robust and Lossless Fingerprinting of Deep Neural Networks via Pooled
Membership Inference
- Authors: Hanzhou Wu
- Abstract summary: Deep neural networks (DNNs) have already achieved great success in a lot of application areas and brought profound changes to our society.
How to protect the intellectual property (IP) of DNNs against infringement is one of the most important yet very challenging topics.
This paper proposes a novel technique called emphpooled membership inference (PMI) so as to protect the IP of the DNN models.
- Score: 17.881686153284267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have already achieved great success in a lot of
application areas and brought profound changes to our society. However, it also
raises new security problems, among which how to protect the intellectual
property (IP) of DNNs against infringement is one of the most important yet
very challenging topics. To deal with this problem, recent studies focus on the
IP protection of DNNs by applying digital watermarking, which embeds source
information and/or authentication data into DNN models by tuning network
parameters directly or indirectly. However, tuning network parameters
inevitably distorts the DNN and therefore surely impairs the performance of the
DNN model on its original task regardless of the degree of the performance
degradation. It has motivated the authors in this paper to propose a novel
technique called \emph{pooled membership inference (PMI)} so as to protect the
IP of the DNN models. The proposed PMI neither alters the network parameters of
the given DNN model nor fine-tunes the DNN model with a sequence of carefully
crafted trigger samples. Instead, it leaves the original DNN model unchanged,
but can determine the ownership of the DNN model by inferring which
mini-dataset among multiple mini-datasets was once used to train the target DNN
model, which differs from previous arts and has remarkable potential in
practice. Experiments also have demonstrated the superiority and applicability
of this work.
Related papers
- NetNN: Neural Intrusion Detection System in Programmable Networks [22.230214658519515]
This paper introduces NetNN, a novel DNN-based intrusion detection system that runs completely in the network data plane to achieve low latency.
We show that NetNN can improve the intrusion detection accuracy to 99% while meeting the real-time requirement.
arXiv Detail & Related papers (2024-06-28T15:20:46Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - Deep Intellectual Property Protection: A Survey [70.98782484559408]
Deep Neural Networks (DNNs) have made revolutionary progress in recent years, and are widely used in various fields.
The goal of this paper is to provide a comprehensive survey of two mainstream DNN IP protection methods: deep watermarking and deep fingerprinting.
arXiv Detail & Related papers (2023-04-28T03:34:43Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
arXiv Detail & Related papers (2022-04-12T21:26:49Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - HufuNet: Embedding the Left Piece as Watermark and Keeping the Right
Piece for Ownership Verification in Deep Neural Networks [16.388046449021466]
We propose a novel solution for watermarking deep neural networks (DNNs)
HufuNet is highly robust against model fine-tuning/pruning, kernels cutoff/supplement, functionality-equivalent attack, and fraudulent ownership claims.
arXiv Detail & Related papers (2021-03-25T06:55:22Z) - Deep Serial Number: Computational Watermarking for DNN Intellectual
Property Protection [53.40245698216239]
DSN (Deep Serial Number) is a watermarking algorithm designed specifically for deep neural networks (DNNs)
Inspired by serial numbers in safeguarding conventional software IP, we propose the first implementation of serial number embedding within DNNs.
arXiv Detail & Related papers (2020-11-17T21:42:40Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks (SNNs) have come under the spotlight for machine learning based applications.
We show our methodology for the design of an SNN that achieves nearly the same accuracy results as its corresponding Deep Neural Networks (DNNs)
Our SNN achieves 89.64% classification accuracy and occupies only 37 Loihi cores.
arXiv Detail & Related papers (2020-05-16T17:00:10Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.