論文の概要: Pairwise Difference Learning for Classification
- arxiv url: http://arxiv.org/abs/2406.20031v1
- Date: Fri, 28 Jun 2024 16:20:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 16:20:56.583522
- Title: Pairwise Difference Learning for Classification
- Title(参考訳): 分類のためのペアワイズ差分学習
- Authors: Mohamed Karim Belaid, Maximilian Rabus, Eyke Hüllermeier,
- Abstract要約: PDL(Pairwise difference learning)は、最近、回帰のための新しいメタラーニング技術として導入されている。
元のトレーニングデータのペアバージョン上で、適切に定義された(バイナリ)分類問題を解くことにより、PDLを分類タスクに向けて拡張する。
PDLの実装はPythonパッケージで簡単に利用でき、公開されています。
- 参考スコア(独自算出の注目度): 19.221081896134567
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pairwise difference learning (PDL) has recently been introduced as a new meta-learning technique for regression. Instead of learning a mapping from instances to outcomes in the standard way, the key idea is to learn a function that takes two instances as input and predicts the difference between the respective outcomes. Given a function of this kind, predictions for a query instance are derived from every training example and then averaged. This paper extends PDL toward the task of classification and proposes a meta-learning technique for inducing a PDL classifier by solving a suitably defined (binary) classification problem on a paired version of the original training data. We analyze the performance of the PDL classifier in a large-scale empirical study and find that it outperforms state-of-the-art methods in terms of prediction performance. Last but not least, we provide an easy-to-use and publicly available implementation of PDL in a Python package.
- Abstract(参考訳): PDL(Pairwise difference learning)は、最近、回帰のための新しいメタラーニング技術として導入されている。
標準的な方法でインスタンスから結果へのマッピングを学ぶ代わりに、キーとなるアイデアは、2つのインスタンスを入力として取り、それぞれの結果の違いを予測する関数を学ぶことだ。
このような関数が与えられた場合、クエリインスタンスの予測はトレーニングのすべての例から導出され、平均化されます。
本稿では、PDLを分類の課題に向けて拡張し、元のトレーニングデータのペアバージョン上で適切に定義された(バイナリ)分類問題を解くことにより、PDL分類器を誘導するメタラーニング手法を提案する。
本研究では,PDL分類器の性能を大規模実験により解析し,予測性能において最先端の手法よりも優れていることを示す。
最後に重要なことは、Pythonパッケージで簡単に使用でき、パブリックに利用できるPDLの実装を提供することです。
関連論文リスト
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - Prediction Error-based Classification for Class-Incremental Learning [39.91805363069707]
予測誤差に基づく分類(PEC)を導入する
PECは、そのクラスのデータに基づいて、凍結ランダムニューラルネットワークの出力を複製するために訓練されたモデルの予測誤差を測定して、クラススコアを算出する。
PECは、サンプル効率、チューニングの容易さ、データを一度に1つのクラスに提示しても有効性など、いくつかの実用的な利点を提供している。
論文 参考訳(メタデータ) (2023-05-30T07:43:35Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
本稿では,クラス増分学習のための新しい戦略を提案する。
本提案は,p(x|y)p(y) として分解された合同分布 p(x,y) を学習し,ベイズ則を用いた分類を行うことである。
ここでは,各学習クラスに対して,変分オートエンコーダをトレーニングすることで,この戦略を実証する。
論文 参考訳(メタデータ) (2021-04-20T16:26:14Z) - An Empirical Comparison of Instance Attribution Methods for NLP [62.63504976810927]
本研究は,トレーニングサンプルの重要性に関して,異なるインスタンス属性が一致した度合いを評価する。
単純な検索メソッドは、グラデーションベースの方法によって識別されたものと異なるトレーニングインスタンスを生成する。
論文 参考訳(メタデータ) (2021-04-09T01:03:17Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z) - Simultaneous Perturbation Stochastic Approximation for Few-Shot Learning [0.5801044612920815]
本稿では, プロトタイプ型ネットワーク手法に基づく, プロトタイプライクな少数ショット学習手法を提案する。
ベンチマークデータセットを用いた実験の結果,提案手法は元のネットワークよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-06-09T09:47:58Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
現実世界のオブジェクトの周波数は、しばしば電力法則に従い、長い尾のクラス分布を持つデータセット間のミスマッチを引き起こす。
メタラーニング手法を用いて,クラス条件分布の違いを明示的に推定し,古典的なクラスバランス学習を強化することを提案する。
論文 参考訳(メタデータ) (2020-03-24T11:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。