Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language
- URL: http://arxiv.org/abs/2406.20085v3
- Date: Mon, 24 Mar 2025 09:58:24 GMT
- Title: Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language
- Authors: Yicheng Chen, Xiangtai Li, Yining Li, Yanhong Zeng, Jianzong Wu, Xiangyu Zhao, Kai Chen,
- Abstract summary: Diffusion models can generate realistic and diverse images, potentially facilitating data availability for data-intensive perception tasks.<n>We present textbfAuto textbfCherry-textbfPicker (ACP), a novel framework that generates high-quality cross-modality training samples at scale.
- Score: 41.40908753726324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models can generate realistic and diverse images, potentially facilitating data availability for data-intensive perception tasks. However, leveraging these models to boost performance on downstream tasks with synthetic data poses several challenges, including aligning with real data distribution, scaling synthetic sample volumes, and ensuring their quality. To bridge these gaps, we present \textbf{A}uto \textbf{C}herry-\textbf{P}icker (ACP), a novel framework that generates high-quality cross-modality training samples at scale to augment perception and multi-modal training. ACP first uses LLMs to sample descriptions and layouts based on object combinations from real data priors, eliminating the need for ground truth image captions or annotations. Next, we use an off-the-shelf controllable diffusion model to generate multiple images. Then, the generated data are refined using a comprehensively designed metric, Composite Layout and Image Score (CLIS), to ensure quality. Our customized synthetic high-quality samples boost performance in various scenarios, especially in addressing challenges associated with long-tailed distribution and imbalanced datasets. Experiment results on downstream tasks demonstrate that ACP can significantly improve the performance of existing models. In addition, we find a positive correlation between CLIS and performance gains in downstream tasks. This finding shows the potential for evaluation metrics as the role for various visual perception and MLLM tasks.
Related papers
- Quality-Driven Curation of Remote Sensing Vision-Language Data via Learned Scoring Models [9.238739743596236]
We propose a novel score model trained on large-scale RS visionlanguage preference data for automated quality assessment.
Our empirical results demonstrate that fine-tuning CLIP or advanced VLMs with the top 30% of data ranked by our score model achieves superior interpretation accuracy.
arXiv Detail & Related papers (2025-03-02T05:44:56Z) - Multimodal Preference Data Synthetic Alignment with Reward Model [23.978820500281213]
We propose a new framework in generating synthetic data using a reward model as a proxy of human preference for effective multimodal alignment with DPO training.
Experiment results indicate that integrating selected synthetic data, such as from generative and rewards models can effectively reduce reliance on human-annotated data.
arXiv Detail & Related papers (2024-12-23T09:29:40Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
Large Language Models (LLMs) have accentuated the need for diverse, high-quality pre-training data.
Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility.
We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-10-19T22:14:07Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
We introduce a novel data synthesis method inspired by contrastive learning and image difference captioning.
Our key idea involves challenging the model to discern both matching and distinct elements.
We leverage this generated dataset to fine-tune state-of-the-art (SOTA) MLLMs.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
multimodal large language models (MLLMs) exhibit great potential for chart question answering (CQA)
Recent efforts primarily focus on scaling up training datasets through data collection and synthesis.
We propose a visualization-referenced instruction tuning approach to guide the training dataset enhancement and model development.
arXiv Detail & Related papers (2024-07-29T17:04:34Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
Large language models (LLMs) have demonstrated their ability to learn in-context.
The effectiveness of in-context learning is heavily reliant on the quality of the selected examples.
We propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples.
arXiv Detail & Related papers (2023-07-14T05:23:08Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Multimodal Knowledge Alignment with Reinforcement Learning [103.68816413817372]
ESPER extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning.
Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision.
Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks.
arXiv Detail & Related papers (2022-05-25T10:12:17Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
We propose to augment a vision-language pre-training model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD)
Experiments show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning.
The original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
arXiv Detail & Related papers (2022-03-12T09:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.