論文の概要: Hybrid Heterogeneous Clusters Can Lower the Energy Consumption of LLM Inference Workloads
- arxiv url: http://arxiv.org/abs/2407.00010v1
- Date: Thu, 25 Apr 2024 11:24:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:48:25.042722
- Title: Hybrid Heterogeneous Clusters Can Lower the Energy Consumption of LLM Inference Workloads
- Title(参考訳): ハイブリッド不均一クラスターはLLM推論ワークロードのエネルギー消費を減少させる
- Authors: Grant Wilkins, Srinivasan Keshav, Richard Mortier,
- Abstract要約: 大規模言語モデル(LLM)の訓練と使用には大量のエネルギーが必要である。
本稿では, LLM を運用するデータセンターにおけるエネルギー消費削減の課題に対処する。
本稿では,コストベースのスケジューリングフレームワークを用いて,ハードウェアアクセラレータ間でタスクを動的に割り当てるハイブリッドデータセンターモデルを提案する。
- 参考スコア(独自算出の注目度): 0.2389598109913753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Both the training and use of Large Language Models (LLMs) require large amounts of energy. Their increasing popularity, therefore, raises critical concerns regarding the energy efficiency and sustainability of data centers that host them. This paper addresses the challenge of reducing energy consumption in data centers running LLMs. We propose a hybrid data center model that uses a cost-based scheduling framework to dynamically allocate LLM tasks across hardware accelerators that differ in their energy efficiencies and computational capabilities. Specifically, our workload-aware strategy determines whether tasks are processed on energy-efficient processors or high-performance GPUs based on the number of input and output tokens in a query. Our analysis of a representative LLM dataset, finds that this hybrid strategy can reduce CPU+GPU energy consumption by 7.5% compared to a workload-unaware baseline.
- Abstract(参考訳): LLM(Large Language Models)のトレーニングと使用はどちらも大量のエネルギーを必要とする。
そのため、彼らの人気は増し、それらをホストするデータセンターのエネルギー効率と持続可能性に関する重要な懸念を提起する。
本稿では,LLMを実行するデータセンターにおける消費電力削減の課題について述べる。
本研究では、コストベースのスケジューリングフレームワークを用いて、そのエネルギー効率と計算能力が異なるハードウェアアクセラレーター間でLCMタスクを動的に割り当てるハイブリッドデータセンターモデルを提案する。
具体的には、タスクがエネルギー効率のよいプロセッサで処理されているか、クエリの入力トークンと出力トークンの数に基づいて高性能GPUで処理されているかを決定する。
代表的なLCMデータセットを解析した結果,このハイブリッド戦略は,ワークロードを意識しないベースラインに比べてCPU+GPUの消費電力を7.5%削減できることがわかった。
関連論文リスト
- DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency [7.073435885680335]
そこで我々はDynamoLLMを提案する。DynamoLLMは、生成型大規模言語モデルのための最初のエネルギー管理フレームワークである。
サービスレベルでは、DynamoLLMは53%のエネルギーと38%の運転二酸化炭素を節約し、顧客へのコストを61%削減する。
論文 参考訳(メタデータ) (2024-08-01T17:40:45Z) - Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of LLM Inference [6.68507515624183]
大規模な言語モデルを提供するためのデータセンター拡張の最大の課題として、エネルギーの可用性が最前線に現れている。
入力,モデル,サービスレベルの合意によっては,LLM推論プロバイダがエネルギー効率を高めるために利用できるノブがいくつか存在することを示す。
論文 参考訳(メタデータ) (2024-03-29T17:22:48Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z) - From Words to Watts: Benchmarking the Energy Costs of Large Language
Model Inference [19.439683873290623]
大規模言語モデル(LLM)は、新しい生成能力によって、最先端の最先端をはるかに超えているため、人気が高まっている。
これらのモデルには計算上の課題、特に推論に必要な計算とエネルギーのコストが伴う。
論文 参考訳(メタデータ) (2023-10-04T17:41:59Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - POLCA: Power Oversubscription in LLM Cloud Providers [0.8299593158757622]
大規模言語モデル (LLMs) はますます強力になりつつある。
LLMクラスタに電力をオーバーサブスクライブする大きな機会があることが示される。
我々は、堅牢で信頼性があり、GPUクラスタに容易にデプロイ可能な、パワーオーバーサブスクライブのためのフレームワークであるPOLCAを提案する。
論文 参考訳(メタデータ) (2023-08-24T16:32:34Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。