Comparing fine-grained and coarse-grained object detection for ecology
- URL: http://arxiv.org/abs/2407.00018v1
- Date: Mon, 6 May 2024 04:50:55 GMT
- Title: Comparing fine-grained and coarse-grained object detection for ecology
- Authors: Jess Tam, Justin Kay,
- Abstract summary: We investigated how model results were affected by combining multiple species in single classes.
We found that species that benefited the most from merging into a single class were mainly species that look alike morphologically.
We suggest that practitioners could classify morphologically similar species together as a functional group or higher taxonomic group to draw ecological inferences.
- Score: 0.5755004576310334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision applications are increasingly popular for wildlife monitoring tasks. While some studies focus on the monitoring of a single species, such as a particular endangered species, others monitor larger functional groups, such as predators. In our study, we used camera trap images collected in north-western New South Wales, Australia, to investigate how model results were affected by combining multiple species in single classes, and whether the addition of negative samples can improve model performance. We found that species that benefited the most from merging into a single class were mainly species that look alike morphologically, i.e. macropods. Whereas species that looked distinctively different gave mixed results when merged, e.g. merging pigs and goats together as non-native large mammals. We also found that adding negative samples improved model performance marginally in most instances, and recommend conducting a more comprehensive study to explore whether the marginal gains were random or consistent. We suggest that practitioners could classify morphologically similar species together as a functional group or higher taxonomic group to draw ecological inferences. Nevertheless, whether to merge classes or not will depend on the ecological question to be explored.
Related papers
- LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
We focus on the problem of species distribution modeling using global-scale presence-only data.
To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model.
We propose a novel proximity-aware evaluation metric that enables evaluating species distribution models.
arXiv Detail & Related papers (2023-12-13T18:11:37Z) - Comparison between transformers and convolutional models for
fine-grained classification of insects [7.107353918348911]
We consider the taxonomical class of Insecta.
The identification of insects is essential in biodiversity monitoring as they are one of the inhabitants at the base of many ecosystems.
We have billions of images that need to be automatically classified and deep neural network algorithms are one of the main techniques explored for fine-grained tasks.
arXiv Detail & Related papers (2023-07-20T10:00:04Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
We show that ensembles of Data-efficient image Transformers (DeiTs) significantly outperform the previous state of the art (SOTA)
On all the data sets we test, we achieve a new SOTA, with a reduction of the error with respect to the previous SOTA ranging from 18.48% to 87.50%.
arXiv Detail & Related papers (2022-03-03T14:16:22Z) - Modeling Category-Selective Cortical Regions with Topographic
Variational Autoencoders [72.15087604017441]
Category-selectivity describes the observation that certain spatially localized areas of the cerebral cortex tend to respond robustly and selectively to stimuli from specific limited categories.
We leverage the newly introduced Topographic Variational Autoencoder to model of the emergence of such localized category-selectivity in an unsupervised manner.
We show preliminary results suggesting that our model yields a nested spatial hierarchy of increasingly abstract categories, analogous to observations from the human ventral temporal cortex.
arXiv Detail & Related papers (2021-10-25T11:37:41Z) - Digital Taxonomist: Identifying Plant Species in Citizen Scientists'
Photographs [22.061682739457343]
classifying plant specimens based on image data alone is challenging.
Most species observations are accompanied by side information about the spatial, temporal and ecological context.
We propose a machine learning model that takes into account these additional cues in a unified framework.
arXiv Detail & Related papers (2021-06-07T16:38:02Z) - Dynamic $\beta$-VAEs for quantifying biodiversity by clustering
optically recorded insect signals [0.6091702876917281]
We propose an adaptive variant of the variational autoencoder (VAE) capable of clustering data by phylogenetic groups.
We demonstrate the usefulness of the dynamic $beta$-VAE on optically recorded insect signals from regions of southern Scandinavia.
arXiv Detail & Related papers (2021-02-10T16:14:13Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.