Neural Graphics Texture Compression Supporting Random Access
- URL: http://arxiv.org/abs/2407.00021v2
- Date: Fri, 25 Oct 2024 18:13:23 GMT
- Title: Neural Graphics Texture Compression Supporting Random Access
- Authors: Farzad Farhadzadeh, Qiqi Hou, Hoang Le, Amir Said, Randall Rauwendaal, Alex Bourd, Fatih Porikli,
- Abstract summary: We introduce a novel approach to texture set compression that integrates traditional GPU texture representation and NIC techniques.
We propose an asymmetric auto-encoder framework that employs a convolutional encoder to capture detailed information in a bottleneck-latent space.
Experimental results demonstrate that this approach provides much better results than conventional texture compression.
- Score: 34.974631096947284
- License:
- Abstract: Advances in rendering have led to tremendous growth in texture assets, including resolution, complexity, and novel textures components, but this growth in data volume has not been matched by advances in its compression. Meanwhile Neural Image Compression (NIC) has advanced significantly and shown promising results, but the proposed methods cannot be directly adapted to neural texture compression. First, texture compression requires on-demand and real-time decoding with random access during parallel rendering (e.g. block texture decompression on GPUs). Additionally, NIC does not support multi-resolution reconstruction (mip-levels), nor does it have the ability to efficiently jointly compress different sets of texture channels. In this work, we introduce a novel approach to texture set compression that integrates traditional GPU texture representation and NIC techniques, designed to enable random access and support many-channel texture sets. To achieve this goal, we propose an asymmetric auto-encoder framework that employs a convolutional encoder to capture detailed information in a bottleneck-latent space, and at decoder side we utilize a fully connected network, whose inputs are sampled latent features plus positional information, for a given texture coordinate and mip level. This latent data is defined to enable simplified access to multi-resolution data by simply changing the scanning strides. Experimental results demonstrate that this approach provides much better results than conventional texture compression, and significant improvement over the latest method using neural networks.
Related papers
- Toward Scalable Image Feature Compression: A Content-Adaptive and Diffusion-Based Approach [44.03561901593423]
This paper introduces a content-adaptive diffusion model for scalable image compression.
The proposed method encodes fine textures through a diffusion process, enhancing perceptual quality.
Experiments demonstrate the effectiveness of the proposed framework in both image reconstruction and downstream machine vision tasks.
arXiv Detail & Related papers (2024-10-08T15:48:34Z) - High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - Random-Access Neural Compression of Material Textures [1.2971248363246106]
We propose a novel neural compression technique specifically designed for material textures.
We unlock two more levels of detail, i.e., 16x more texels, using low compression.
Our method allows on-demand, real-time decompression with random access, enabling compression on disk and memory.
arXiv Detail & Related papers (2023-05-26T17:16:22Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - COIN++: Data Agnostic Neural Compression [55.27113889737545]
COIN++ is a neural compression framework that seamlessly handles a wide range of data modalities.
We demonstrate the effectiveness of our method by compressing various data modalities.
arXiv Detail & Related papers (2022-01-30T20:12:04Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Towards Analysis-friendly Face Representation with Scalable Feature and
Texture Compression [113.30411004622508]
We show that a universal and collaborative visual information representation can be achieved in a hierarchical way.
Based on the strong generative capability of deep neural networks, the gap between the base feature layer and enhancement layer is further filled with the feature level texture reconstruction.
To improve the efficiency of the proposed framework, the base layer neural network is trained in a multi-task manner.
arXiv Detail & Related papers (2020-04-21T14:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.