JungleGPT: Designing and Optimizing Compound AI Systems for E-Commerce
- URL: http://arxiv.org/abs/2407.00038v1
- Date: Tue, 28 May 2024 20:14:18 GMT
- Title: JungleGPT: Designing and Optimizing Compound AI Systems for E-Commerce
- Authors: Sherry Ruan, Tian Zhao,
- Abstract summary: We present JungleGPT, the first compound AI system tailored for real-world e-commerce applications.
We outline the system's design and the techniques used to optimize its performance for practical use cases.
- Score: 0.4194758891177309
- License:
- Abstract: LLMs have significantly advanced the e-commerce industry by powering applications such as personalized recommendations and customer service. However, most current efforts focus solely on monolithic LLMs and fall short in addressing the complexity and scale of real-world e-commerce scenarios. In this work, we present JungleGPT, the first compound AI system tailored for real-world e-commerce applications. We outline the system's design and the techniques used to optimize its performance for practical use cases, which have proven to reduce inference costs to less than 1% of what they would be with a powerful, monolithic LLM.
Related papers
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - Investigating LLM Applications in E-Commerce [17.854070801235217]
Large Language Models (LLMs) have revolutionized natural language processing in various applications especially in e-commerce.
This paper explored the efficacy of LLMs in the e-commerce domain, focusing on instruction-tuning an open source LLM model with public e-commerce datasets of varying sizes.
We examined the effectiveness of the current niche industrial application of very large LLM, using in-context learning, in e-commerce specific tasks.
arXiv Detail & Related papers (2024-08-23T00:57:37Z) - EC-Guide: A Comprehensive E-Commerce Guide for Instruction Tuning and Quantization [7.982538359035973]
EC-Guide hrefhttps://github.com/fzp0424/EC-Guide-KDDUP-2024 is a comprehensive e-commerce guide for instruction tuning and quantization of LLMs.
Our solution is model-agnostic, enabling effective scalability across larger systems.
arXiv Detail & Related papers (2024-08-06T05:50:41Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data [12.895762133464103]
We construct ECInstruct, the first open-sourced, large-scale, and high-quality benchmark instruction dataset for e-commerce.
We develop eCeLLM, a series of e-commerce LLMs, by instruction-tuning general-purpose LLMs.
eCeLLM exhibits excellent generalizability to out-of-domain settings, including unseen products and unseen instructions.
arXiv Detail & Related papers (2024-02-13T22:26:24Z) - EE-Tuning: An Economical yet Scalable Solution for Tuning Early-Exit
Large Language Models [75.1814102438065]
EE-Tuning is a solution to training/tuning early-exit large language models (LLMs)
It augments any pre-trained (and possibly fine-tuned) standard LLM with additional early-exit layers that are tuned in a parameter-efficient manner.
Our implementation achieves outstanding training efficiency via extensive performance optimizations.
arXiv Detail & Related papers (2024-02-01T11:39:04Z) - EcomGPT-CT: Continual Pre-training of E-commerce Large Language Models
with Semi-structured Data [67.8302955948861]
Large Language Models (LLMs) pre-trained on massive corpora have exhibited remarkable performance on various NLP tasks.
Applying these models to specific domains still poses significant challenges, such as lack of domain knowledge.
We focus on domain-specific continual pre-training of LLMs using E-commerce domain as an exemplar.
arXiv Detail & Related papers (2023-12-25T11:31:47Z) - Learning Instance-Level Representation for Large-Scale Multi-Modal
Pretraining in E-commerce [35.73830796500975]
We propose an instance-centric multi-modal pretraining paradigm called ECLIP in this work.
To enable the model to focus on the desired product instance without reliance on expensive manual annotations, two specially configured pretext tasks are proposed.
ECLIP surpasses existing methods by a large margin on a broad range of downstream tasks, demonstrating the strong transferability to real-world E-commerce applications.
arXiv Detail & Related papers (2023-04-06T04:14:41Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
At Pinterest, we build a single set of product embeddings called ItemSage to provide relevant recommendations in all shopping use cases.
This approach has led to significant improvements in engagement and conversion metrics, while reducing both infrastructure and maintenance cost.
arXiv Detail & Related papers (2022-05-24T02:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.