LLM-based Optimization of Compound AI Systems: A Survey
- URL: http://arxiv.org/abs/2410.16392v1
- Date: Mon, 21 Oct 2024 18:06:25 GMT
- Title: LLM-based Optimization of Compound AI Systems: A Survey
- Authors: Matthieu Lin, Jenny Sheng, Andrew Zhao, Shenzhi Wang, Yang Yue, Yiran Wu, Huan Liu, Jun Liu, Gao Huang, Yong-Jin Liu,
- Abstract summary: In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
- Score: 64.39860384538338
- License:
- Abstract: In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected. The system's behavior is primarily driven by parameters such as instructions or tool definitions. Recent advancements enable end-to-end optimization of these parameters using an LLM. Notably, leveraging an LLM as an optimizer is particularly efficient because it avoids gradient computation and can generate complex code and instructions. This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems. It covers archetypes of compound AI systems, approaches to LLM-based end-to-end optimization, and insights into future directions and broader impacts. Importantly, this survey uses concepts from program analysis to provide a unified view of how an LLM optimizer is prompted to optimize a compound AI system. The exhaustive list of paper is provided at https://github.com/linyuhongg/LLM-based-Optimization-of-Compound-AI-Systems.
Related papers
- LLM Alignment as Retriever Optimization: An Information Retrieval Perspective [44.26715637344781]
Large Language Models (LLMs) have revolutionized artificial intelligence with capabilities in reasoning, coding, and communication.
Our work introduces a novel direct optimization approach for LLM alignment by drawing on established Information Retrieval (IR) principles.
Building on this foundation, we propose LLM Alignment as Retriever Preference Optimization (LarPO), a new alignment method that enhances overall alignment quality.
arXiv Detail & Related papers (2025-02-06T01:22:06Z) - Using Large Language Models for Parametric Shape Optimization [2.464331481632096]
We develop an optimization framework, LLM-PSO, to determine the optimal shape of parameterized engineering designs.
Our preliminary exploration may inspire further investigations into harnessing LLMs for shape optimization and engineering design more broadly.
arXiv Detail & Related papers (2024-12-11T03:35:38Z) - AIME: AI System Optimization via Multiple LLM Evaluators [79.03422337674664]
AIME is an evaluation protocol that utilizes multiple LLMs that each independently generate an evaluation on separate criteria and then combine them via concatenation.
We show AIME outperforming baseline methods in code generation tasks, with up to $62%$ higher error detection rate and up to $16%$ higher success rate than a single LLM evaluation protocol on LeetCodeHard and HumanEval datasets.
arXiv Detail & Related papers (2024-10-04T04:03:24Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
Code written by developers usually suffers from efficiency problems and contain various performance bugs.
Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs)
We propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods.
arXiv Detail & Related papers (2024-08-22T06:59:46Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.
We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.
In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.