Visual Reasoning and Multi-Agent Approach in Multimodal Large Language Models (MLLMs): Solving TSP and mTSP Combinatorial Challenges
- URL: http://arxiv.org/abs/2407.00092v1
- Date: Wed, 26 Jun 2024 07:12:06 GMT
- Title: Visual Reasoning and Multi-Agent Approach in Multimodal Large Language Models (MLLMs): Solving TSP and mTSP Combinatorial Challenges
- Authors: Mohammed Elhenawy, Ahmad Abutahoun, Taqwa I. Alhadidi, Ahmed Jaber, Huthaifa I. Ashqar, Shadi Jaradat, Ahmed Abdelhay, Sebastien Glaser, Andry Rakotonirainy,
- Abstract summary: Multimodal Large Language Models (MLLMs) harness comprehensive knowledge spanning text, images, and audio to adeptly tackle complex problems.
This study explores the ability of MLLMs in visually solving the Traveling Salesman Problem (TSP) and Multiple Traveling Salesman Problem (mTSP)
We introduce a novel approach employing multiple specialized agents within the MLLM framework, each dedicated to optimizing solutions for these challenges.
- Score: 5.934258790280767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) harness comprehensive knowledge spanning text, images, and audio to adeptly tackle complex problems, including zero-shot in-context learning scenarios. This study explores the ability of MLLMs in visually solving the Traveling Salesman Problem (TSP) and Multiple Traveling Salesman Problem (mTSP) using images that portray point distributions on a two-dimensional plane. We introduce a novel approach employing multiple specialized agents within the MLLM framework, each dedicated to optimizing solutions for these combinatorial challenges. Our experimental investigation includes rigorous evaluations across zero-shot settings and introduces innovative multi-agent zero-shot in-context scenarios. The results demonstrated that both multi-agent models. Multi-Agent 1, which includes the Initializer, Critic, and Scorer agents, and Multi-Agent 2, which comprises only the Initializer and Critic agents; significantly improved solution quality for TSP and mTSP problems. Multi-Agent 1 excelled in environments requiring detailed route refinement and evaluation, providing a robust framework for sophisticated optimizations. In contrast, Multi-Agent 2, focusing on iterative refinements by the Initializer and Critic, proved effective for rapid decision-making scenarios. These experiments yield promising outcomes, showcasing the robust visual reasoning capabilities of MLLMs in addressing diverse combinatorial problems. The findings underscore the potential of MLLMs as powerful tools in computational optimization, offering insights that could inspire further advancements in this promising field. Project link: https://github.com/ahmed-abdulhuy/Solving-TSP-and-mTSP-Combinatorial-Challenges-using-Visual-Reasoni ng-and-Multi-Agent-Approach-MLLMs-.git
Related papers
- Multi-modal Retrieval Augmented Multi-modal Generation: A Benchmark, Evaluate Metrics and Strong Baselines [63.427721165404634]
This paper investigates an intriguing task of Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG)
This task requires foundation models to browse multi-modal web pages, with mixed text and images, and generate multi-modal responses for solving user queries.
We construct a benchmark for M$2$RAG task, equipped with a suite of text-modal metrics and multi-modal metrics to analyze the capabilities of existing foundation models.
arXiv Detail & Related papers (2024-11-25T13:20:19Z) - Eyeballing Combinatorial Problems: A Case Study of Using Multimodal Large Language Models to Solve Traveling Salesman Problems [6.157421830538752]
Multimodal Large Language Models (MLLMs) have demonstrated proficiency in processing di-verse modalities.
This paper investigates the use of MLLMs' visual capabilities to 'eyeball' solutions for the Traveling Salesman Problem.
arXiv Detail & Related papers (2024-06-11T00:41:08Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [60.17448025069594]
We investigate the potential of Large Language Models to enhance multimodal representation in multimodal item-to-item recommendations.
One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks.
We propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
We present a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings.
Based on our proposed joint mixing, we propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images.
We hope our work may cast a light on the exploration of joint mixing in future MLLM research.
arXiv Detail & Related papers (2023-11-13T18:59:47Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.