論文の概要: Predictive accuracy of recommender algorithms
- arxiv url: http://arxiv.org/abs/2407.00097v1
- Date: Wed, 26 Jun 2024 19:25:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:11:26.615994
- Title: Predictive accuracy of recommender algorithms
- Title(参考訳): 推薦アルゴリズムの予測精度
- Authors: William Noffsinger,
- Abstract要約: ディープラーニングニューラルネットワークの適用を含む,レコメンデータシステムのさまざまなアルゴリズムが開発され,改良されている。
最近の研究報告は、異なる推奨アルゴリズムの相対的精度に関する洞察を得るために、慎重に制御された実験を行う必要があることを指摘している。
この調査では、従来の3つの推奨アルゴリズムと2つのディープラーニング(DL)アルゴリズムを組み合わせて、公開されている評価データのソースを使用して、比較精度を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. This investigation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems.
- Abstract(参考訳): 推薦システムは、ユーザやアイテムの特徴に基づいてカスタマイズされたアイテムのリストを提示する。
ディープラーニングニューラルネットワークの適用を含む,レコメンデータシステムのさまざまなアルゴリズムが開発され,改良されている。
最近の研究報告は、異なる手法を評価する研究は、共通のベンチマークデータセット、ベースラインモデル、評価指標を使用していないため、異なる推奨アルゴリズムの相対的精度に関する洞察を得るために、慎重に制御された実験を行う必要があることを指摘している。
この調査では、従来の3つの推奨アルゴリズムと2つのディープラーニング(DL)アルゴリズムを組み合わせて、公開されている評価データのソースを使用して、比較精度を評価した。
非DLアルゴリズムの結果は、公表された結果やベンチマークとよく一致した。
2つのDLアルゴリズムは、文献に報告されているように、DLレコメンデータアルゴリズムを実装した既知の課題をうまく実行しなかった。
モデルオーバーフィッティングは、DLアルゴリズムの弱い性能の潜在的な説明として議論され、予測誤差を改善するためのいくつかの正規化戦略が考えられるアプローチとしてレビューされる。
発見は、推薦システムのためのディープラーニングモデルの使用に関するさらなる研究の必要性を正当化する。
関連論文リスト
- Pre-trained Language Model and Knowledge Distillation for Lightweight Sequential Recommendation [51.25461871988366]
本稿では,事前学習言語モデルと知識蒸留に基づく逐次推薦アルゴリズムを提案する。
提案アルゴリズムは,推薦精度を高め,タイムリーな推薦サービスを提供する。
論文 参考訳(メタデータ) (2024-09-23T08:39:07Z) - Performance Evaluation and Comparison of a New Regression Algorithm [4.125187280299247]
新たに提案した回帰アルゴリズムの性能を,従来の4つの機械学習アルゴリズムと比較した。
GitHubリポジトリにソースコードを提供したので、読者は結果の複製を自由にできます。
論文 参考訳(メタデータ) (2023-06-15T13:01:16Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Optimized Recommender Systems with Deep Reinforcement Learning [0.0]
本研究は,再現性のあるテストベッドをセットアップし,現実的な環境下での異なる技術アルゴリズムの状態を評価する手法について検討・開発する。
提案、文献レビュー、方法論、結果、コメントを含む。
論文 参考訳(メタデータ) (2021-10-06T19:54:55Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Enhancing accuracy of deep learning algorithms by training with
low-discrepancy sequences [15.2292571922932]
トレーニングセットとして低差分シーケンスに基づく深層教師付き学習アルゴリズムを提案する。
提案アルゴリズムは, 適度な高次元の問題に対して, 標準的なディープラーニングアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-05-26T08:14:00Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
最適な個別化処理規則を推定するための非パラメトリックアルゴリズムを提案する。
提案アルゴリズムは機械学習文学において最も強力なアルゴリズムの1つであるXGBoostアルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-01-31T22:26:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。