Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals
- URL: http://arxiv.org/abs/2407.00127v1
- Date: Fri, 28 Jun 2024 03:03:55 GMT
- Title: Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals
- Authors: Sowmya Sankaran,
- Abstract summary: This research focused on fine-tuning object detection models for drone images to create accurate counts of animal species.
We trained 30 different models, with the largest having 43.7 million parameters and 365 layers.
We deployed the models on the Jetson Orin Nano for demonstration of low-power real-time species detection for easy inference on drones.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Animal populations worldwide are rapidly declining, and a technology that can accurately count endangered species could be vital for monitoring population changes over several years. This research focused on fine-tuning object detection models for drone images to create accurate counts of animal species. Hundreds of images taken using a drone and large, openly available drone-image datasets were used to fine-tune machine learning models with the baseline YOLOv8 architecture. We trained 30 different models, with the largest having 43.7 million parameters and 365 layers, and used hyperparameter tuning and data augmentation techniques to improve accuracy. While the state-of-the-art YOLOv8 baseline had only 0.7% accuracy on a dataset of safari animals, our models had 95% accuracy on the same dataset. Finally, we deployed the models on the Jetson Orin Nano for demonstration of low-power real-time species detection for easy inference on drones.
Related papers
- POLO -- Point-based, multi-class animal detection [4.572449721501902]
POLO is a multi-class object detection model that can be trained entirely on point labels.
POLO achieves improved accuracy in counting animals in aerial imagery.
arXiv Detail & Related papers (2024-10-15T16:17:16Z) - Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
In this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models.
The experimental results of different models are provided along with a description of each method.
arXiv Detail & Related papers (2024-05-16T18:56:46Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
In this work, we present a deep learning pipeline that can be used to precisely detect, count, and monitor waterbirds using aerial imagery collected by a commercial drone.
By utilizing convolutional neural network-based object detectors, we show that we can detect 16 classes of waterbird species that are commonly found in colonial nesting islands along the Texas coast.
arXiv Detail & Related papers (2022-10-10T17:37:56Z) - Sequence Models for Drone vs Bird Classification [2.294014185517203]
Drone detection has become an essential task in object detection as drone costs have decreased and drone technology has improved.
It is difficult to detect distant drones when there is weak contrast, long range, and low visibility.
We propose several sequence classification architectures to reduce the detected false-positive ratio of drone tracks.
arXiv Detail & Related papers (2022-07-21T11:00:44Z) - Small Object Detection using Deep Learning [0.28675177318965034]
The proposed system consists of a custom deep learning model Tiny YOLOv3, one of the flavors of very fast object detection model You Look Only Once (YOLO) is built and used for detection.
The proposed architecture has shown significantly better performance as compared to the previous YOLO version.
arXiv Detail & Related papers (2022-01-10T09:58:25Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - Scarce Data Driven Deep Learning of Drones via Generalized Data
Distribution Space [12.377024173799631]
We show how understanding the general distribution of the drone data via a Generative Adversarial Network (GAN) can allow us to acquire missing data to achieve rapid and more accurate learning.
We demonstrate our results on a drone image dataset, which contains both real drone images as well as simulated images from computer-aided design.
arXiv Detail & Related papers (2021-08-18T17:07:32Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
We present an extensive dataset of free-running cheetahs in the wild, called AcinoSet.
The dataset contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames.
The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided.
arXiv Detail & Related papers (2021-03-24T15:54:11Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.