POLO -- Point-based, multi-class animal detection
- URL: http://arxiv.org/abs/2410.11741v1
- Date: Tue, 15 Oct 2024 16:17:16 GMT
- Title: POLO -- Point-based, multi-class animal detection
- Authors: Giacomo May, Emanuele Dalsasso, Benjamin Kellenberger, Devis Tuia,
- Abstract summary: POLO is a multi-class object detection model that can be trained entirely on point labels.
POLO achieves improved accuracy in counting animals in aerial imagery.
- Score: 4.572449721501902
- License:
- Abstract: Automated wildlife surveys based on drone imagery and object detection technology are a powerful and increasingly popular tool in conservation biology. Most detectors require training images with annotated bounding boxes, which are tedious, expensive, and not always unambiguous to create. To reduce the annotation load associated with this practice, we develop POLO, a multi-class object detection model that can be trained entirely on point labels. POLO is based on simple, yet effective modifications to the YOLOv8 architecture, including alterations to the prediction process, training losses, and post-processing. We test POLO on drone recordings of waterfowl containing up to multiple thousands of individual birds in one image and compare it to a regular YOLOv8. Our experiments show that at the same annotation cost, POLO achieves improved accuracy in counting animals in aerial imagery.
Related papers
- Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals [0.0]
This research focused on fine-tuning object detection models for drone images to create accurate counts of animal species.
We trained 30 different models, with the largest having 43.7 million parameters and 365 layers.
We deployed the models on the Jetson Orin Nano for demonstration of low-power real-time species detection for easy inference on drones.
arXiv Detail & Related papers (2024-06-28T03:03:55Z) - Designing A Sustainable Marine Debris Clean-up Framework without Human Labels [0.0]
Marine debris poses a significant ecological threat to birds, fish, and other animal life.
Traditional methods for assessing debris accumulation involve labor-intensive and costly manual surveys.
This study introduces a framework that utilizes aerial imagery captured by drones to conduct remote trash surveys.
arXiv Detail & Related papers (2024-05-23T17:28:23Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - Weakly Supervised Faster-RCNN+FPN to classify animals in camera trap
images [0.0]
Camera traps have revolutionized the animal research of many species that were previously nearly impossible to observe due to their habitat or behavior.
Deep learning has the potential to overcome the workload to automate image classification according to taxon or empty images.
We propose a workflow named Weakly Object Detection Faster-RCNN+FPN which suits this challenge.
arXiv Detail & Related papers (2022-08-30T08:21:59Z) - CLAMP: Prompt-based Contrastive Learning for Connecting Language and
Animal Pose [70.59906971581192]
We introduce a novel prompt-based Contrastive learning scheme for connecting Language and AniMal Pose effectively.
The CLAMP attempts to bridge the gap by adapting the text prompts to the animal keypoints during network training.
Experimental results show that our method achieves state-of-the-art performance under the supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2022-06-23T14:51:42Z) - ByteTrack: Multi-Object Tracking by Associating Every Detection Box [51.93588012109943]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos.
Most methods obtain identities by associating detection boxes whose scores are higher than a threshold.
We present a simple, effective and generic association method, called BYTE, tracking BY associaTing every detection box instead of only the high score ones.
arXiv Detail & Related papers (2021-10-13T17:01:26Z) - Unsupervised Visual Representation Learning by Tracking Patches in Video [88.56860674483752]
We propose to use tracking as a proxy task for a computer vision system to learn the visual representations.
Modelled on the Catch game played by the children, we design a Catch-the-Patch (CtP) game for a 3D-CNN model to learn visual representations.
arXiv Detail & Related papers (2021-05-06T09:46:42Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
We develop a framework for automatic detection and recognition of individuals in different patterned species.
We use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images.
We evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species.
arXiv Detail & Related papers (2020-05-06T15:29:21Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.