Towards Secure and Efficient Data Scheduling for Vehicular Social Networks
- URL: http://arxiv.org/abs/2407.00141v1
- Date: Fri, 28 Jun 2024 15:20:50 GMT
- Title: Towards Secure and Efficient Data Scheduling for Vehicular Social Networks
- Authors: Youhua Xia, Tiehua Zhang, Jiong Jin, Ying He, Fei Yu,
- Abstract summary: This paper introduces an innovative learning-based algorithm for scheduling data transmission within vehicular social networks.
The algorithm first uses a specifically constructed neural network to enhance data processing capabilities.
It incorporates a Q-learning paradigm during the data transmission phase to optimize the information exchange.
- Score: 6.52925077242833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient data transmission scheduling within vehicular environments poses a significant challenge due to the high mobility of such networks. Contemporary research predominantly centers on crafting cooperative scheduling algorithms tailored for vehicular networks. Notwithstanding, the intricacies of orchestrating scheduling in vehicular social networks both effectively and efficiently remain formidable. This paper introduces an innovative learning-based algorithm for scheduling data transmission that prioritizes efficiency and security within vehicular social networks. The algorithm first uses a specifically constructed neural network to enhance data processing capabilities. After this, it incorporates a Q-learning paradigm during the data transmission phase to optimize the information exchange, the privacy of which is safeguarded by differential privacy through the communication process. Comparative experiments demonstrate the superior performance of the proposed Q-learning enhanced scheduling algorithm relative to existing state-of-the-art scheduling algorithms in the context of vehicular social networks.
Related papers
- Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges.
U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side.
To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data.
arXiv Detail & Related papers (2024-11-11T07:59:13Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Semantic-aware Transmission Scheduling: a Monotonicity-driven Deep
Reinforcement Learning Approach [39.681075180578986]
For cyber-physical systems in the 6G era, semantic communications are required to guarantee application-level performance.
In this paper, we first investigate the fundamental properties of the optimal semantic-aware scheduling policy.
We then develop advanced deep reinforcement learning (DRL) algorithms by leveraging the theoretical guidelines.
arXiv Detail & Related papers (2023-05-23T05:45:22Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Reinforcement Learning Algorithm for Traffic Steering in Heterogeneous
Network [0.609170287691728]
This paper proposes a novel traffic steering algorithm for usage in HetNets.
The novel algorithm was compared with two reference algorithms using network simulation results.
arXiv Detail & Related papers (2021-11-29T23:56:18Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - Linear Regression over Networks with Communication Guarantees [1.4271989597349055]
In connected autonomous systems, data transfer takes place over communication networks with often limited resources.
This paper examines algorithms for communication-efficient learning for linear regression tasks by exploiting the informativeness of the data.
arXiv Detail & Related papers (2021-03-06T15:28:21Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Adaptive Scheduling for Machine Learning Tasks over Networks [1.4271989597349055]
This paper examines algorithms for efficiently allocating resources to linear regression tasks by exploiting the informativeness of the data.
The algorithms developed enable adaptive scheduling of learning tasks with reliable performance guarantees.
arXiv Detail & Related papers (2021-01-25T10:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.