Localizing Anomalies via Multiscale Score Matching Analysis
- URL: http://arxiv.org/abs/2407.00148v2
- Date: Thu, 18 Jul 2024 17:07:17 GMT
- Title: Localizing Anomalies via Multiscale Score Matching Analysis
- Authors: Ahsan Mahmood, Junier Oliva, Martin Styner,
- Abstract summary: This paper introduces Spatial-MSMA, a novel unsupervised method for anomaly localization in brain MRIs.
We employ a flexible normalizing flow model conditioned on patch positions and global image features to estimate patch-wise anomaly scores.
The method is evaluated on a dataset of 1,650 T1- and T2-weighted brain MRIs from typically developing children.
- Score: 13.898576482792173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection and localization in medical imaging remain critical challenges in healthcare. This paper introduces Spatial-MSMA (Multiscale Score Matching Analysis), a novel unsupervised method for anomaly localization in volumetric brain MRIs. Building upon the MSMA framework, our approach incorporates spatial information and conditional likelihoods to enhance anomaly detection capabilities. We employ a flexible normalizing flow model conditioned on patch positions and global image features to estimate patch-wise anomaly scores. The method is evaluated on a dataset of 1,650 T1- and T2-weighted brain MRIs from typically developing children, with simulated lesions added to the test set. Spatial-MSMA significantly outperforms existing methods, including reconstruction-based, generative-based, and interpretation-based approaches, in lesion detection and segmentation tasks. Our model achieves superior performance in both distance-based metrics (99th percentile Hausdorff Distance: $7.05 \pm 0.61$, Mean Surface Distance: $2.10 \pm 0.43$) and component-wise metrics (True Positive Rate: $0.83 \pm 0.01$, Positive Predictive Value: $0.96 \pm 0.01$). These results demonstrate Spatial-MSMA's potential for accurate and interpretable anomaly localization in medical imaging, with implications for improved diagnosis and treatment planning in clinical settings. Our code is available at~\url{https://github.com/ahsanMah/sade/}.
Related papers
- Rethinking Medical Anomaly Detection in Brain MRI: An Image Quality Assessment Perspective [14.39502951611029]
We propose a fusion quality loss function that combines Structural Similarity Index Measure loss with l1 loss, offering a more comprehensive evaluation of reconstruction quality.
We also introduce a data pre-processing strategy that enhances the average intensity ratio (AIR) between normal and abnormal regions, further improving the distinction of anomalies.
The proposed IQA approach achieves significant improvements (>10%) in terms of Dice coefficient (DICE) and Area Under the Precision-Recall Curve (AUPRC) on the BraTS21 (T2, FLAIR) and MSULB datasets.
arXiv Detail & Related papers (2024-08-15T15:55:07Z) - Deep Bayesian segmentation for colon polyps: Well-calibrated predictions in medical imaging [0.0]
We build different Bayesian neural network approaches to develop semantic segmentation of colorectal polyp images.
We found that these models not only provide state-of-the-art performance on the segmentation of this medical dataset but also, yield accurate uncertainty estimates.
arXiv Detail & Related papers (2024-07-23T16:13:27Z) - Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images [0.23960026858846614]
The objective of this study was to develop an automated pipeline that enhances thyroid disease classification using thyroid scintigraphy images.
Anterior thyroid scintigraphy images from 2,643 patients were collected and categorized into diffuse goiter (DG), multinodal goiter (MNG), and thyroiditis (TH)
The pipeline demonstrated comparable performance to physician segmentations on several classification metrics across different classes.
arXiv Detail & Related papers (2024-07-14T21:29:28Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability [0.5772546394254112]
This work employs a pre-trained, multi-view Convolutional Neural Network (CNN) with a spatial attention block to optimise knee injury detection.
An open-source Magnetic Resonance Imaging (MRI) data set with image-level labels was leveraged for this analysis.
arXiv Detail & Related papers (2021-08-18T13:24:17Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.