Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability
- URL: http://arxiv.org/abs/2108.08136v1
- Date: Wed, 18 Aug 2021 13:24:17 GMT
- Title: Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability
- Authors: Niamh Belton, Ivan Welaratne, Adil Dahlan, Ronan T Hearne, Misgina
Tsighe Hagos, Aonghus Lawlor and Kathleen M. Curran
- Abstract summary: This work employs a pre-trained, multi-view Convolutional Neural Network (CNN) with a spatial attention block to optimise knee injury detection.
An open-source Magnetic Resonance Imaging (MRI) data set with image-level labels was leveraged for this analysis.
- Score: 0.5772546394254112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work employs a pre-trained, multi-view Convolutional Neural Network
(CNN) with a spatial attention block to optimise knee injury detection. An
open-source Magnetic Resonance Imaging (MRI) data set with image-level labels
was leveraged for this analysis. As MRI data is acquired from three planes, we
compare our technique using data from a single-plane and multiple planes
(multi-plane). For multi-plane, we investigate various methods of fusing the
planes in the network. This analysis resulted in the novel 'MPFuseNet' network
and state-of-the-art Area Under the Curve (AUC) scores for detecting Anterior
Cruciate Ligament (ACL) tears and Abnormal MRIs, achieving AUC scores of 0.977
and 0.957 respectively. We then developed an objective metric, Penalised
Localisation Accuracy (PLA), to validate the model's localisation ability. This
metric compares binary masks generated from Grad-Cam output and the
radiologist's annotations on a sample of MRIs. We also extracted explainability
features in a model-agnostic approach that were then verified as clinically
relevant by the radiologist.
Related papers
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - NEURO HAND: A weakly supervised Hierarchical Attention Network for
interpretable neuroimaging abnormality Detection [0.516706940452805]
We present a hierarchical attention network for abnormality detection using MRI scans obtained in a clinical hospital setting.
The proposed network is suitable for non-volumetric data (i.e. stacks of high-resolution MRI slices) and can be trained from binary examination-level labels.
arXiv Detail & Related papers (2023-11-06T09:55:19Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.