Permutation invariant multi-output Gaussian Processes for drug combination prediction in cancer
- URL: http://arxiv.org/abs/2407.00175v1
- Date: Fri, 28 Jun 2024 18:28:38 GMT
- Title: Permutation invariant multi-output Gaussian Processes for drug combination prediction in cancer
- Authors: Leiv Rønneberg, Vidhi Lalchand, Paul D. W. Kirk,
- Abstract summary: Dose-response prediction in cancer is an active application field in machine learning.
The goal is to develop accurate predictive models that can be used to guide experimental design or inform treatment decisions.
- Score: 2.1145050293719745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dose-response prediction in cancer is an active application field in machine learning. Using large libraries of \textit{in-vitro} drug sensitivity screens, the goal is to develop accurate predictive models that can be used to guide experimental design or inform treatment decisions. Building on previous work that makes use of permutation invariant multi-output Gaussian Processes in the context of dose-response prediction for drug combinations, we develop a variational approximation to these models. The variational approximation enables a more scalable model that provides uncertainty quantification and naturally handles missing data. Furthermore, we propose using a deep generative model to encode the chemical space in a continuous manner, enabling prediction for new drugs and new combinations. We demonstrate the performance of our model in a simple setting using a high-throughput dataset and show that the model is able to efficiently borrow information across outputs.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
We show that Sparse Implicit Processes (SIP) is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model.
We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.
arXiv Detail & Related papers (2022-07-21T18:00:01Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity [2.8402080392117752]
neuroscience applications collect high-dimensional predictors' corresponding to brain activity in different regions along with behavioral outcomes.
Joint factor models for the predictors and outcomes are natural, but maximum likelihood estimates of these models can struggle in practice when there is model misspecification.
We propose an alternative inference strategy based on supervised autoencoders; rather than placing a probability distribution on the latent factors, we define them as an unknown function of the high-dimensional predictors.
arXiv Detail & Related papers (2020-04-10T19:31:57Z) - Gaussian Process Boosting [13.162429430481982]
We introduce a novel way to combine boosting with Gaussian process and mixed effects models.
We obtain increased prediction accuracy compared to existing approaches on simulated and real-world data sets.
arXiv Detail & Related papers (2020-04-06T13:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.