Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity
- URL: http://arxiv.org/abs/2004.05209v1
- Date: Fri, 10 Apr 2020 19:31:57 GMT
- Title: Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity
- Authors: Austin Talbot, David Dunson, Kafui Dzirasa, David Carlson
- Abstract summary: neuroscience applications collect high-dimensional predictors' corresponding to brain activity in different regions along with behavioral outcomes.
Joint factor models for the predictors and outcomes are natural, but maximum likelihood estimates of these models can struggle in practice when there is model misspecification.
We propose an alternative inference strategy based on supervised autoencoders; rather than placing a probability distribution on the latent factors, we define them as an unknown function of the high-dimensional predictors.
- Score: 2.8402080392117752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Factor models are routinely used for dimensionality reduction in modeling of
correlated, high-dimensional data. We are particularly motivated by
neuroscience applications collecting high-dimensional `predictors'
corresponding to brain activity in different regions along with behavioral
outcomes. Joint factor models for the predictors and outcomes are natural, but
maximum likelihood estimates of these models can struggle in practice when
there is model misspecification. We propose an alternative inference strategy
based on supervised autoencoders; rather than placing a probability
distribution on the latent factors, we define them as an unknown function of
the high-dimensional predictors. This mapping function, along with the
loadings, can be optimized to explain variance in brain activity while
simultaneously being predictive of behavior. In practice, the mapping function
can range in complexity from linear to more complex forms, such as splines or
neural networks, with the usual tradeoff between bias and variance. This
approach yields distinct solutions from a maximum likelihood inference
strategy, as we demonstrate by deriving analytic solutions for a linear
Gaussian factor model. Using synthetic data, we show that this function-based
approach is robust against multiple types of misspecification. We then apply
this technique to a neuroscience application resulting in substantial gains in
predicting behavioral tasks from electrophysiological measurements in multiple
factor models.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Inverse decision-making using neural amortized Bayesian actors [19.128377007314317]
We amortize the Bayesian actor using a neural network trained on a wide range of different parameter settings in an unsupervised fashion.
We show that the inferred posterior distributions are in close alignment with those obtained using analytical solutions where they exist.
We then show that identifiability problems between priors and costs can arise in more complex cost functions.
arXiv Detail & Related papers (2024-09-04T10:31:35Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.
Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Data-driven Uncertainty Quantification in Computational Human Head
Models [0.6745502291821954]
Modern biofidelic head model simulations are associated with very high computational cost and high-dimensional inputs and outputs.
In this study, a two-stage, data-driven manifold learning-based framework is proposed for uncertainty quantification (UQ) of computational head models.
It is demonstrated that the surrogate models provide highly accurate approximations of the computational model while significantly reducing the computational cost.
arXiv Detail & Related papers (2021-10-29T05:42:31Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Causal Inference with Deep Causal Graphs [0.0]
Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
arXiv Detail & Related papers (2020-06-15T13:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.