Deconvolving Complex Neuronal Networks into Interpretable Task-Specific Connectomes
- URL: http://arxiv.org/abs/2407.00201v2
- Date: Wed, 3 Jul 2024 15:37:54 GMT
- Title: Deconvolving Complex Neuronal Networks into Interpretable Task-Specific Connectomes
- Authors: Yifan Wang, Vikram Ravindra, Ananth Grama,
- Abstract summary: Task-specific functional MRI (fMRI) images provide excellent modalities for studying the neuronal basis of cognitive processes.
We use fMRI data to formulate and solve the problem of deconvolving task-specific aggregate neuronal networks into a set of basic building blocks called canonical networks.
- Score: 12.762193569830593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Task-specific functional MRI (fMRI) images provide excellent modalities for studying the neuronal basis of cognitive processes. We use fMRI data to formulate and solve the problem of deconvolving task-specific aggregate neuronal networks into a set of basic building blocks called canonical networks, to use these networks for functional characterization, and to characterize the physiological basis of these responses by mapping them to regions of the brain. Our results show excellent task-specificity of canonical networks, i.e., the expression of a small number of canonical networks can be used to accurately predict tasks; generalizability across cohorts, i.e., canonical networks are conserved across diverse populations, studies, and acquisition protocols; and that canonical networks have strong anatomical and physiological basis. From a methods perspective, the problem of identifying these canonical networks poses challenges rooted in the high dimensionality, small sample size, acquisition variability, and noise. Our deconvolution technique is based on non-negative matrix factorization (NMF) that identifies canonical networks as factors of a suitably constructed matrix. We demonstrate that our method scales to large datasets, yields stable and accurate factors, and is robust to noise.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Graph Metanetworks for Processing Diverse Neural Architectures [33.686728709734105]
Graph Metanetworks (GMNs) generalizes to neural architectures where competing methods struggle.
We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions.
arXiv Detail & Related papers (2023-12-07T18:21:52Z) - Feature emergence via margin maximization: case studies in algebraic
tasks [4.401622714202886]
We show that trained neural networks employ features corresponding to irreducible group-theoretic representations to perform compositions in general groups.
More generally, we hope our techniques can help to foster a deeper understanding of why neural networks adopt specific computational strategies.
arXiv Detail & Related papers (2023-11-13T18:56:33Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
We provide a family of metric spaces that quantify representational dissimilarity.
We modify existing representational similarity measures based on canonical correlation analysis to satisfy the triangle inequality.
We identify relationships between neural representations that are interpretable in terms of anatomical features and model performance.
arXiv Detail & Related papers (2021-10-27T19:48:55Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
We generalize the idea of conditional parametrization -- using trainable functions of input parameters.
We show that conditionally parameterized networks provide superior performance compared to their traditional counterparts.
A network architecture named CP-GNet is also proposed as the first deep learning model capable of reacting standalone prediction of flows on meshes.
arXiv Detail & Related papers (2021-09-15T20:21:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Emergence of Network Motifs in Deep Neural Networks [0.35911228556176483]
We show that network science tools can be successfully applied to the study of artificial neural networks.
In particular, we study the emergence of network motifs in multi-layer perceptrons.
arXiv Detail & Related papers (2019-12-27T17:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.