論文の概要: External Model Motivated Agents: Reinforcement Learning for Enhanced Environment Sampling
- arxiv url: http://arxiv.org/abs/2407.00264v1
- Date: Fri, 28 Jun 2024 23:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 05:41:03.374982
- Title: External Model Motivated Agents: Reinforcement Learning for Enhanced Environment Sampling
- Title(参考訳): 外部モデルモチベーションエージェント:環境サンプリング強化のための強化学習
- Authors: Rishav Bhagat, Jonathan Balloch, Zhiyu Lin, Julia Kim, Mark Riedl,
- Abstract要約: 強化学習(RL)エージェントとは異なり、人間は環境の変化において有能なマルチタスクのままである。
環境変化における外部モデルの適応効率を向上させるために,RLエージェントのエージェント影響フレームワークを提案する。
提案手法は,効率と性能の両面を測る指標に対する外部モデル適応の観点から,ベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.536024441537599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike reinforcement learning (RL) agents, humans remain capable multitaskers in changing environments. In spite of only experiencing the world through their own observations and interactions, people know how to balance focusing on tasks with learning about how changes may affect their understanding of the world. This is possible by choosing to solve tasks in ways that are interesting and generally informative beyond just the current task. Motivated by this, we propose an agent influence framework for RL agents to improve the adaptation efficiency of external models in changing environments without any changes to the agent's rewards. Our formulation is composed of two self-contained modules: interest fields and behavior shaping via interest fields. We implement an uncertainty-based interest field algorithm as well as a skill-sampling-based behavior-shaping algorithm to use in testing this framework. Our results show that our method outperforms the baselines in terms of external model adaptation on metrics that measure both efficiency and performance.
- Abstract(参考訳): 強化学習(RL)エージェントとは異なり、人間は環境の変化において有能なマルチタスクのままである。
自分自身の観察と相互作用を通じて世界を経験するだけで、人々は、変化が世界に対する理解にどのように影響するかを学ぶことで、タスクに集中する方法を知っています。
これは、現在のタスクだけでなく、興味深く、一般的に有益な方法でタスクを解くことで可能になります。
そこで我々は,RLエージェントのエージェント・インフルエンス・フレームワークを提案し,エージェントの報酬を変更することなく,環境変化における外部モデルの適応効率を向上させる。
我々の定式化は2つの自己完結加群から成っている。
このフレームワークをテストするために,不確実性に基づく関心領域アルゴリズムと,スキルサンプリングに基づく行動形成アルゴリズムを実装した。
提案手法は,効率と性能の両面を測る指標に対する外部モデル適応の観点から,ベースラインよりも優れていることを示す。
関連論文リスト
- Ontology-Enhanced Decision-Making for Autonomous Agents in Dynamic and Partially Observable Environments [0.0]
この論文では、自律エージェントのためのオントロジー強化意思決定モデル(OntoDeM)を紹介している。
OntoDeMはエージェントのドメイン知識を充実させ、予期せぬイベントを解釈し、目標を生成または適応させ、より良い意思決定を可能にする。
OntoDeMは従来の学習アルゴリズムや高度な学習アルゴリズムと比較して、動的で部分的に観察可能な環境におけるエージェントの観察と意思決定を改善する上で優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-27T22:52:23Z) - Causal Coordinated Concurrent Reinforcement Learning [8.654978787096807]
本稿では,データ共有と協調探索のための新しいアルゴリズムフレームワークを提案する。
本アルゴリズムは,独立規制による個人差分制御モデルパラメータの抽出において,付加雑音モデル-混合モデル(ANM-MM)という形で因果推論アルゴリズムを利用する。
抽出したモデルパラメータの類似度に基づく新しいデータ共有方式を提案し, 自己回帰, 振り子, カートポールのスイングアップタスクのセットにおいて, 優れた学習速度を示す。
論文 参考訳(メタデータ) (2024-01-31T17:20:28Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Investigating the role of model-based learning in exploration and
transfer [11.652741003589027]
本稿では,モデルベースエージェントの文脈における伝達学習について検討する。
モデルベースアプローチは,移動学習におけるモデルフリーベースラインよりも優れていることがわかった。
本研究の結果から,本質的な探索と環境モデルが組み合わさって,自己監督的かつ新たな報酬関数に一般化可能なエージェントの方向性を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-02-08T11:49:58Z) - Denoised MDPs: Learning World Models Better Than the World Itself [94.74665254213588]
本研究は,野生の情報を制御可能性と報酬との関係に基づく4つのタイプに分類し,制御性および報酬関連性の両方に有用な情報を定式化する。
DeepMind Control Suite と RoboDesk の変種に関する実験では、生の観測のみを用いた場合よりも、認知された世界モデルの優れた性能が示されている。
論文 参考訳(メタデータ) (2022-06-30T17:59:49Z) - Differential Assessment of Black-Box AI Agents [29.98710357871698]
従来知られていたモデルから逸脱したブラックボックスAIエージェントを差分評価する手法を提案する。
我々は,漂流エージェントの現在の挙動と初期モデルの知識の疎度な観察を利用して,アクティブなクエリポリシーを生成する。
経験的評価は、エージェントモデルをスクラッチから再学習するよりも、我々のアプローチの方がはるかに効率的であることを示している。
論文 参考訳(メタデータ) (2022-03-24T17:48:58Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Causal Influence Detection for Improving Efficiency in Reinforcement
Learning [11.371889042789219]
条件付き相互情報に基づく状況依存因果関係の尺度を導入する。
影響の状態を確実に検出できることが示される。
修正アルゴリズムはすべて、ロボット操作タスクにおけるデータ効率の大幅な向上を示している。
論文 参考訳(メタデータ) (2021-06-07T09:21:56Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
本稿では,将来期待される新しい自由エネルギーを最小化するアクティブ推論エージェントを提案する。
我々のモデルは、非常に高いサンプル効率でスパース・リワード問題を解くことができる。
また、複雑な目的の表現を単純化する報奨関数から事前モデルを近似する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-04T10:03:36Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。