論文の概要: HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
- arxiv url: http://arxiv.org/abs/2503.24070v1
- Date: Mon, 31 Mar 2025 13:28:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:33:06.679859
- Title: HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
- Title(参考訳): ロボット学習のためのヒューマン・アズ・コパイロット遠隔操作システムHACTS
- Authors: Zhiyuan Xu, Yinuo Zhao, Kun Wu, Ning Liu, Junjie Ji, Zhengping Che, Chi Harold Liu, Jian Tang,
- Abstract要約: HACTS(Human-As-Copilot Teleoperation System)は,ロボットアームと遠隔操作ハードウェアを双方向でリアルタイムに同期させるシステムである。
このシンプルで効果的なフィードバックメカニズムは、自動運転車のステアリングホイールに似たもので、人間の操縦士がシームレスに介入し、将来の学習のために行動補正データを収集することを可能にする。
- 参考スコア(独自算出の注目度): 47.9126187195398
- License:
- Abstract: Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
- Abstract(参考訳): 遠隔操作は自律的なロボット学習、特に人間のデモンストレーションや修正を必要とする操作に不可欠である。
しかし、既存のほとんどのシステムは片側ロボット制御のみを提供しており、遠隔操作ハードウェアとロボットの状態を同期させる能力がなく、リアルタイムで柔軟な介入を防いでいる。
本研究では,ロボットアームと遠隔操作ハードウェアを双方向でリアルタイムに同期させる新しいシステムであるHACTS(Human-As-Copilot Teleoperation System)を紹介する。
このシンプルで効果的なフィードバックメカニズムは、自動運転車のステアリングホイールに似たもので、人間の操縦士がシームレスに介入し、将来の学習のために行動補正データを収集することを可能にする。
3Dプリントされた部品と安価なオフザシェルフモーターを使って実装されたHACTSは、使いやすくてスケーラブルだ。
実験により,HACTSは模倣学習(IL)および強化学習(RL)タスクのパフォーマンスを著しく向上し,IL回復能力とデータ効率を向上し,ループ内RLを容易にすることを示した。
HACTSは、より効果的でインタラクティブな人間ロボットのコラボレーションとデータ収集の道を開き、ロボット操作の能力を向上させる。
関連論文リスト
- Force-Based Robotic Imitation Learning: A Two-Phase Approach for Construction Assembly Tasks [2.6092377907704254]
本稿では,ロボット学習を改善するための2段階システムを提案する。
第1フェーズは、ROS-Sharpを介して仮想シミュレータにリンクされたロボットアームを使用して、オペレータからリアルタイムデータをキャプチャする。
第2段階では、このフィードバックは、学習プロセスに力フィードバックを組み込むための生成的アプローチを用いて、ロボットの動き指示に変換される。
論文 参考訳(メタデータ) (2025-01-24T22:01:23Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - Real-Time Dynamic Robot-Assisted Hand-Object Interaction via Motion Primitives [45.256762954338704]
本稿では,動的ロボット支援ハンドオブジェクトインタラクションに着目した物理HRIの強化手法を提案する。
我々はトランスフォーマーに基づくアルゴリズムを用いて、1枚のRGB画像から人間の手の動きをリアルタイムに3Dモデリングする。
ロボットのアクション実装は、継続的に更新された3Dハンドモデルを使用して動的に微調整される。
論文 参考訳(メタデータ) (2024-05-29T21:20:16Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Improving safety in physical human-robot collaboration via deep metric
learning [36.28667896565093]
柔軟な生産シナリオでは、ロボットとの直接の物理的相互作用がますます重要になっている。
リスクポテンシャルを低く抑えるため、物理的な接触がある場合や安全距離に違反する場合など、比較的簡単な操作措置が定められている。
この研究はDeep Metric Learning(DML)アプローチを用いて、非接触ロボットの動き、物理的人間とロボットの相互作用を目的とした意図的な接触、衝突状況の区別を行う。
論文 参考訳(メタデータ) (2023-02-23T11:26:51Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
本稿では,実演から学び,ポーズ推定を用いたロボット協調組立システムを提案する。
提案システムでは, ロボット組立シナリオにおいて, 物理的6DoFマニピュレータを用いて実験を行った。
論文 参考訳(メタデータ) (2022-12-02T20:35:55Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。