PhyTracker: An Online Tracker for Phytoplankton
- URL: http://arxiv.org/abs/2407.00352v1
- Date: Sat, 29 Jun 2024 07:53:47 GMT
- Title: PhyTracker: An Online Tracker for Phytoplankton
- Authors: Yang Yu, Qingxuan Lv, Yuezun Li, Zhiqiang Wei, Junyu Dong,
- Abstract summary: PhyTracker is an in situ tracking framework designed for automatic tracking of phytoplankton.
Our method incorporates three innovative modules: a Texture-enhanced Feature Extraction (TFE) module, an Attention-enhanced Temporal Association (ATA) module, and a Flow-agnostic Movement Refinement (FMR) module.
- Score: 36.37513641359679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phytoplankton, a crucial component of aquatic ecosystems, requires efficient monitoring to understand marine ecological processes and environmental conditions. Traditional phytoplankton monitoring methods, relying on non-in situ observations, are time-consuming and resource-intensive, limiting timely analysis. To address these limitations, we introduce PhyTracker, an intelligent in situ tracking framework designed for automatic tracking of phytoplankton. PhyTracker overcomes significant challenges unique to phytoplankton monitoring, such as constrained mobility within water flow, inconspicuous appearance, and the presence of impurities. Our method incorporates three innovative modules: a Texture-enhanced Feature Extraction (TFE) module, an Attention-enhanced Temporal Association (ATA) module, and a Flow-agnostic Movement Refinement (FMR) module. These modules enhance feature capture, differentiate between phytoplankton and impurities, and refine movement characteristics, respectively. Extensive experiments on the PMOT dataset validate the superiority of PhyTracker in phytoplankton tracking, and additional tests on the MOT dataset demonstrate its general applicability, outperforming conventional tracking methods. This work highlights key differences between phytoplankton and traditional objects, offering an effective solution for phytoplankton monitoring.
Related papers
- MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark [36.37530623015916]
We propose a benchmark dataset, Multiple Phytoplankton Tracking (MPT), which covers diverse background information and variations in motion during observation.
The dataset includes 27 species of phytoplankton and zooplankton, 14 different backgrounds to simulate diverse and complex underwater environments, and a total of 140 videos.
We introduce an additional feature extractor to predict the residuals of the standard feature extractor's output, and compute multi-scale frame-to-frame similarity based on features from different layers of the extractor.
arXiv Detail & Related papers (2024-10-22T04:57:28Z) - FishMOT: A Simple and Effective Method for Fish Tracking Based on IoU
Matching [11.39414015803651]
FishMOT is a novel fish tracking approach combining object detection and objectoU matching.
The method exhibits excellent robustness and generalizability for varying environments and fish numbers.
arXiv Detail & Related papers (2023-09-06T13:16:41Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
The aim of in-trawl catch monitoring for use in fishing operations is to detect, track and classify fish targets in real-time from video footage.
We propose a novel MOT method, built upon an existing observation-centric tracking algorithm, by adopting a new iterative association step.
Our method offers improved performance in tracking targets with uniform appearance and outperforms state-of-the-art techniques on our underwater fish datasets as well as the MOT17 dataset.
arXiv Detail & Related papers (2023-04-10T18:55:10Z) - Towards Phytoplankton Parasite Detection Using Autoencoders [0.06234523779509325]
We propose an unsupervised anomaly detection system based on the similarity of the original and autoencoder-reconstructed samples.
We were able to reach an overall F1 score of 0.75 in nine phytoplankton species.
arXiv Detail & Related papers (2023-03-15T16:35:58Z) - Plankton-FL: Exploration of Federated Learning for Privacy-Preserving
Training of Deep Neural Networks for Phytoplankton Classification [81.04987357598802]
In this study, we explore the feasibility of leveraging federated learning for privacy-preserving training of deep neural networks for phytoplankton classification.
We simulate two different federated learning frameworks, federated learning (FL) and mutually exclusive FL (ME-FL)
Experimental results from this study demonstrate the feasibility and potential of federated learning for phytoplankton monitoring.
arXiv Detail & Related papers (2022-12-18T02:11:03Z) - Efficient Unsupervised Learning for Plankton Images [12.447149371717]
Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem.
The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation.
We propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms.
arXiv Detail & Related papers (2022-09-14T15:33:16Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.