qLUE: A Quantum Clustering Algorithm for Multi- Dimensional Datasets
- URL: http://arxiv.org/abs/2407.00357v2
- Date: Sun, 7 Jul 2024 06:26:22 GMT
- Title: qLUE: A Quantum Clustering Algorithm for Multi- Dimensional Datasets
- Authors: Dhruv Gopalakrishnan, Luca Dellantonio, Antonio Di Pilato, Wahid Redjeb, Felice Pantaleo, Michele Mosca,
- Abstract summary: qLUE is a quantum clustering algorithm that scales linearly in both the number of points and their density.
We show that qLUE is a promising route to handle complex data analysis tasks.
- Score: 0.6597195879147555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering algorithms are at the basis of several technological applications, and are fueling the development of rapidly evolving fields such as machine learning. In the recent past, however, it has become apparent that they face challenges stemming from datasets that span more spatial dimensions. In fact, the best-performing clustering algorithms scale linearly in the number of points, but quadratically with respect to the local density of points. In this work, we introduce qLUE, a quantum clustering algorithm that scales linearly in both the number of points and their density. qLUE is inspired by CLUE, an algorithm developed to address the challenging time and memory budgets of Event Reconstruction (ER) in future High-Energy Physics experiments. As such, qLUE marries decades of development with the quadratic speedup provided by quantum computers. We numerically test qLUE in several scenarios, demonstrating its effectiveness and proving it to be a promising route to handle complex data analysis tasks -- especially in high-dimensional datasets with high densities of points.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum density peak clustering [5.8010446129208155]
We introduce a quantum version of the density peak clustering algorithm, built upon a quantum routine for minimum finding.
We prove a quantum speedup for a decision version of density peak clustering depending on the structure of the dataset.
arXiv Detail & Related papers (2022-07-21T15:58:40Z) - Variational Quantum and Quantum-Inspired Clustering [0.0]
We present a quantum algorithm for clustering data based on a variational quantum circuit.
The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2022-06-20T17:02:19Z) - Quantum clustering and jet reconstruction at the LHC [0.0]
Jet clustering at the CERN's Large Hadron Collider is computationally expensive.
We consider two novel quantum algorithms which may speed up the classical jet clustering algorithms.
arXiv Detail & Related papers (2022-04-13T16:27:04Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum K-medians Algorithm Using Parallel Euclidean Distance Estimator [0.0]
This paper proposes an efficient quantum k-medians clustering algorithm using the powerful quantum Euclidean estimator algorithm.
The proposed quantum k-medians algorithm has provided an exponential speed up as compared to the classical version of it.
arXiv Detail & Related papers (2020-12-21T06:38:20Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.