論文の概要: Multi-task multi-constraint differential evolution with elite-guided knowledge transfer for coal mine integrated energy system dispatching
- arxiv url: http://arxiv.org/abs/2407.00386v1
- Date: Sat, 29 Jun 2024 10:00:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:25:29.424104
- Title: Multi-task multi-constraint differential evolution with elite-guided knowledge transfer for coal mine integrated energy system dispatching
- Title(参考訳): 炭鉱統合エネルギーシステムディスパッチのためのエリート誘導知識伝達によるマルチタスク多拘束差分進化
- Authors: Canyun Dai, Xiaoyan Sun, Hejuan Hu, Wei Song, Yong Zhang, Dunwei Gong,
- Abstract要約: 既存の制約付き多目的進化アルゴリズムは、複数の小さく不規則な実現可能な領域を見つけるのに苦労している。
本稿では、分散相関ドメイン知識を組み込んだマルチタスク進化アルゴリズムフレームワークを開発する。
石炭鉱山統合エネルギーシステムのケーススタディにおいて, 実現可能性, 収束性, 多様性に関する提案アルゴリズムを実証した。
- 参考スコア(独自算出の注目度): 9.050846217690856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dispatch optimization of coal mine integrated energy system is challenging due to high dimensionality, strong coupling constraints, and multiobjective. Existing constrained multiobjective evolutionary algorithms struggle with locating multiple small and irregular feasible regions, making them inaplicable to this problem. To address this issue, we here develop a multitask evolutionary algorithm framework that incorporates the dispatch correlated domain knowledge to effectively deal with strong constraints and multiobjective optimization. Possible evolutionary multitask construction strategy based on complex constraint relationship analysis and handling, i.e., constraint coupled spatial decomposition, constraint strength classification and constraint handling technique, is first explored. Within the multitask evolutionary optimization framework, two strategies, i.e., an elite guided knowledge transfer by designing a special crowding distance mechanism to select dominant individuals from each task, and an adaptive neighborhood technology based mutation to effectively balance the diversity and convergence of each optimized task for the differential evolution algorithm, are further developed. The performance of the proposed algorithm in feasibility, convergence, and diversity is demonstrated in a case study of a coal mine integrated energy system by comparing with CPLEX solver and seven constrained multiobjective evolutionary algorithms.
- Abstract(参考訳): 炭鉱統合エネルギーシステムの分散最適化は、高次元性、強い結合制約、多目的性のために困難である。
既存の制約付き多目的進化アルゴリズムは、複数の小さく不規則な実現可能な領域を見つけるのに苦労しており、この問題には適用できない。
この問題に対処するため,我々は分散相関ドメイン知識を組み込んだマルチタスク進化アルゴリズムフレームワークを開発し,強い制約と多目的最適化を効果的に処理する。
複雑な制約関係解析とハンドリングに基づく進化的マルチタスク構築戦略,すなわち制約結合空間分解,制約強度分類,制約ハンドリング技術について検討した。
マルチタスク進化最適化フレームワークでは、各タスクから支配的な個人を選択するための特別な群集距離機構を設計して知識伝達を誘導するエリート戦略と、微分進化アルゴリズムにおける各最適化タスクの多様性と収束を効果的にバランスさせる適応近隣技術に基づく突然変異の2つの戦略が開発されている。
CPLEXソルバと7つの制約付き多目的進化アルゴリズムとの比較により,石炭鉱山統合エネルギーシステムのケーススタディにおいて,提案アルゴリズムの性能,収束性,多様性を実証した。
関連論文リスト
- Weighted strategies to guide a multi-objective evolutionary algorithm
for multi-UAV mission planning [12.97430155510359]
この研究は、新しい個体の生成と突然変異のための重み付きランダム・ジェネレータを提案する。
この研究の主な目的は、マルチUAVミッション計画のためのMOEAソルバの収束率を下げることである。
論文 参考訳(メタデータ) (2024-02-28T23:05:27Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
本稿では,高次元特徴選択問題,すなわちMO-FSEMTのための新しいEMTフレームワークを開発する。
タスク固有の知識伝達機構は、各タスクの利点情報を活用するように設計され、高品質なソリューションの発見と効果的な伝達を可能にする。
論文 参考訳(メタデータ) (2024-01-03T06:34:39Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
制約付き多目的最適化問題(CMOP)は、科学、工学、設計における現実世界の応用に及んでいる。
本稿では,目的関数と制約関数を分離する乗算器の交互方向法の原理に着想を得た,この種の進化的最適化フレームワークについて紹介する。
本研究の枠組みは,元の問題を2つのサブプロブレムの付加形式に再構成することで,未知の制約でCMOPに対処する。
論文 参考訳(メタデータ) (2024-01-02T00:38:20Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic
Algorithm for Evolutionary Multitasking [17.120962133525225]
本稿では,進化的マルチタスク環境を扱うための適応メタヒューリスティックアルゴリズムを提案する。
AT-MFCGAはセルラーオートマトンを利用して、検討中の最適化問題の知識を交換する機構を実装している。
論文 参考訳(メタデータ) (2020-10-08T12:00:10Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary
Multitasking [9.54239662772307]
マルチタスク環境を扱うための新しいアルゴリズムスキームを提案する。
提案手法はCoevolutionary Bat Algorithmと呼ばれ、共進化的戦略とメタヒューリスティックなBat Algorithmの両方から着想を得た。
論文 参考訳(メタデータ) (2020-03-24T13:37:43Z) - Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design,
Performance Comparison and Genetic Transferability Analysis [17.120962133525225]
多目的最適化は先進的な研究領域であり、近年顕著な研究の勢いを増している。
本稿では,多因子最適化シナリオのための新しいアルゴリズムスキームを提案する。
提案したMFCGAはセルオートマタの概念に基づいて,問題間の知識交換機構を実装している。
論文 参考訳(メタデータ) (2020-03-24T11:03:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。