Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process
- URL: http://arxiv.org/abs/2407.00397v1
- Date: Sat, 29 Jun 2024 10:50:23 GMT
- Title: Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process
- Authors: Weihan Li, Yule Wang, Chengrui Li, Anqi Wu,
- Abstract summary: We introduce a universal method that allows an LDS to mirror stationary temporal GPs.
This state-space representation, known as the Markovian Gaussian Process (Markovian GP), leverages the flexibility of kernel functions while maintaining efficient linear computation.
- Score: 2.600709013150986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Processes (GPs) and Linear Dynamical Systems (LDSs) are essential time series and dynamic system modeling tools. GPs can handle complex, nonlinear dynamics but are computationally demanding, while LDSs offer efficient computation but lack the expressive power of GPs. To combine their benefits, we introduce a universal method that allows an LDS to mirror stationary temporal GPs. This state-space representation, known as the Markovian Gaussian Process (Markovian GP), leverages the flexibility of kernel functions while maintaining efficient linear computation. Unlike existing GP-LDS conversion methods, which require separability for most multi-output kernels, our approach works universally for single- and multi-output stationary temporal kernels. We evaluate our method by computing covariance, performing regression tasks, and applying it to a neuroscience application, demonstrating that our method provides an accurate state-space representation for stationary temporal GPs.
Related papers
- Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data [2.8377382540923004]
We derive an alternative kernel that can discover and encode both sparsity and nonstationarity.
We demonstrate the favorable performance of our novel kernel relative to existing exact and approximate GP methods.
We also conduct space-time prediction based on more than one million measurements of daily maximum temperature.
arXiv Detail & Related papers (2024-11-07T20:07:21Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
We propose to integrate the efficient transformed Gaussian process (ETGP) into the GPSSM to efficiently model the transition function in high-dimensional latent state space.
We also develop a corresponding variational inference algorithm that surpasses existing methods in terms of parameter count and computational complexity.
arXiv Detail & Related papers (2023-09-03T04:34:33Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
We propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat'ern kernels and conjugate variational inference (CVI)
We are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods.
arXiv Detail & Related papers (2023-06-01T16:31:36Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Markovian Gaussian Process Variational Autoencoders [19.686719654642392]
We leverage the equivalent discrete state space representation of Markovian GPs to enable linear time GPVAE training via Kalman filtering and smoothing.
For our model, Markovian GPVAE (MGPVAE), we show on a variety of high-dimensional temporal tasks that our method performs favourably compared to existing approaches.
arXiv Detail & Related papers (2022-07-12T14:10:01Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNS is an algorithm for episodic reinforcement learning in non-stationary Markov Decision Processes.
We prove a regret bound that scales with the covering dimension of the state-action space and the total variation of the MDP with time.
arXiv Detail & Related papers (2020-07-09T21:37:13Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Sequential Gaussian Processes for Online Learning of Nonstationary
Functions [9.997259201098602]
We propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference.
Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data.
arXiv Detail & Related papers (2019-05-24T02:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.