Learning Time-Varying Multi-Region Communications via Scalable Markovian Gaussian Processes
- URL: http://arxiv.org/abs/2407.00397v3
- Date: Mon, 10 Feb 2025 19:33:03 GMT
- Title: Learning Time-Varying Multi-Region Communications via Scalable Markovian Gaussian Processes
- Authors: Weihan Li, Yule Wang, Chengrui Li, Anqi Wu,
- Abstract summary: We present a novel framework using Markovian Gaussian Processes to learn brain communications with time-varying temporal delays.<n>This work advances our understanding of distributed neural computation and provides a scalable tool for analyzing dynamic brain networks.
- Score: 2.600709013150986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and constructing brain communications that capture dynamic communications across multiple regions is fundamental to modern system neuroscience, yet current methods struggle to find time-varying region-level communications or scale to large neural datasets with long recording durations. We present a novel framework using Markovian Gaussian Processes to learn brain communications with time-varying temporal delays from multi-region neural recordings, named Adaptive Delay Model (ADM). Our method combines Gaussian Processes with State Space Models and employs parallel scan inference algorithms, enabling efficient scaling to large datasets while identifying concurrent communication patterns that evolve over time. This time-varying approach captures how brain region interactions shift dynamically during cognitive processes. Validated on synthetic and multi-region neural recordings datasets, our approach discovers both the directionality and temporal dynamics of neural communication. This work advances our understanding of distributed neural computation and provides a scalable tool for analyzing dynamic brain networks.
Related papers
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.
Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data [2.8377382540923004]
We derive an alternative kernel that can discover and encode both sparsity and nonstationarity.
We demonstrate the favorable performance of our novel kernel relative to existing exact and approximate GP methods.
We also conduct space-time prediction based on more than one million measurements of daily maximum temperature.
arXiv Detail & Related papers (2024-11-07T20:07:21Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
We propose to integrate the efficient transformed Gaussian process (ETGP) into the GPSSM to efficiently model the transition function in high-dimensional latent state space.
We also develop a corresponding variational inference algorithm that surpasses existing methods in terms of parameter count and computational complexity.
arXiv Detail & Related papers (2023-09-03T04:34:33Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
We propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat'ern kernels and conjugate variational inference (CVI)
We are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods.
arXiv Detail & Related papers (2023-06-01T16:31:36Z) - Learning low-dimensional dynamics from whole-brain data improves task
capture [2.82277518679026]
We introduce a novel approach to learning low-dimensional approximations of neural dynamics by using a sequential variational autoencoder (SVAE)
Our method finds smooth dynamics that can predict cognitive processes with accuracy higher than classical methods.
We evaluate our approach on various task-fMRI datasets, including motor, working memory, and relational processing tasks.
arXiv Detail & Related papers (2023-05-18T18:43:13Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
We introduce a representation learning method, MARBLE, that decomposes on-manifold dynamics into local flow fields and maps them into a common latent space.
In simulated non-linear dynamical systems, recurrent neural networks, and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations.
These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations.
arXiv Detail & Related papers (2023-04-06T21:11:04Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - CommsVAE: Learning the brain's macroscale communication dynamics using
coupled sequential VAEs [0.0]
We propose a non-linear generative approach to communication from functional data.
We show that our approach models communication that is more specific to each task.
The specificity of our method means it can have an impact on the understanding of psychiatric disorders.
arXiv Detail & Related papers (2022-10-07T16:20:19Z) - Markovian Gaussian Process Variational Autoencoders [19.686719654642392]
We leverage the equivalent discrete state space representation of Markovian GPs to enable linear time GPVAE training via Kalman filtering and smoothing.
For our model, Markovian GPVAE (MGPVAE), we show on a variety of high-dimensional temporal tasks that our method performs favourably compared to existing approaches.
arXiv Detail & Related papers (2022-07-12T14:10:01Z) - Canonical Cortical Graph Neural Networks and its Application for Speech
Enhancement in Future Audio-Visual Hearing Aids [0.726437825413781]
This paper proposes a more biologically plausible self-supervised machine learning approach that combines multimodal information using intra-layer modulations together with canonical correlation analysis (CCA)
The approach outperformed recent state-of-the-art results considering both better clean audio reconstruction and energy efficiency, described by a reduced and smother neuron firing rate distribution.
arXiv Detail & Related papers (2022-06-06T15:20:07Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Neural Spatio-Temporal Point Processes [31.474420819149724]
We propose a new class of parameterizations for point-trivial processes which leverage Neural ODEs as a computational method.
We validate our models on data sets from a wide variety of contexts such as seismology, epidemiology, urban mobility, and neuroscience.
arXiv Detail & Related papers (2020-11-09T17:28:23Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNS is an algorithm for episodic reinforcement learning in non-stationary Markov Decision Processes.
We prove a regret bound that scales with the covering dimension of the state-action space and the total variation of the MDP with time.
arXiv Detail & Related papers (2020-07-09T21:37:13Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Sequential Gaussian Processes for Online Learning of Nonstationary
Functions [9.997259201098602]
We propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference.
Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data.
arXiv Detail & Related papers (2019-05-24T02:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.