論文の概要: pFLFE: Cross-silo Personalized Federated Learning via Feature Enhancement on Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2407.00462v1
- Date: Sat, 29 Jun 2024 15:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:06:00.782746
- Title: pFLFE: Cross-silo Personalized Federated Learning via Feature Enhancement on Medical Image Segmentation
- Title(参考訳): pFLFE:医療画像セグメンテーションの機能強化によるクロスサイロ個人化フェデレーションラーニング
- Authors: Luyuan Xie, Manqing Lin, Siyuan Liu, ChenMing Xu, Tianyu Luan, Cong Li, Yuejian Fang, Qingni Shen, Zhonghai Wu,
- Abstract要約: 特徴強化(pFLFE)による個人化フェデレーション学習(Personalized Federated Learning)という新しいフレームワークを提案する。
pFLFEは機能強化と教師あり学習という2つの主要な段階から構成される。
pFLFEは3つの医療セグメンテーションタスクにおいて最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 17.914535780122296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In medical image segmentation, personalized cross-silo federated learning (FL) is becoming popular for utilizing varied data across healthcare settings to overcome data scarcity and privacy concerns. However, existing methods often suffer from client drift, leading to inconsistent performance and delayed training. We propose a new framework, Personalized Federated Learning via Feature Enhancement (pFLFE), designed to mitigate these challenges. pFLFE consists of two main stages: feature enhancement and supervised learning. The first stage improves differentiation between foreground and background features, and the second uses these enhanced features for learning from segmentation masks. We also design an alternative training approach that requires fewer communication rounds without compromising segmentation quality, even with limited communication resources. Through experiments on three medical segmentation tasks, we demonstrate that pFLFE outperforms the state-of-the-art methods.
- Abstract(参考訳): 医療画像のセグメンテーションでは、データ不足やプライバシーの懸念を克服するために、医療環境全体にわたるさまざまなデータを活用するために、パーソナライズされたクロスサイロ・フェデレーション・ラーニング(FL)が人気を集めている。
しかし、既存のメソッドは、しばしばクライアントのドリフトに悩まされ、一貫性のないパフォーマンスと遅延トレーニングにつながります。
本稿では,これらの課題を緩和するための新しいフレームワークであるPersonalized Federated Learning via Feature Enhancement (pFLFE)を提案する。
pFLFEは機能強化と教師あり学習という2つの主要な段階から構成される。
第1段階は前景と背景の特徴の区別を改善し、第2段階はセグメンテーションマスクから学習するためにこれらの強化された特徴を使用する。
また,通信資源が限られている場合でも,セグメンテーションの品質を損なうことなく,通信ラウンドを少なくする訓練手法を設計する。
3つの医療セグメンテーションタスクの実験を通して、pFLFEは最先端の手法よりも優れていることを示した。
関連論文リスト
- CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition [0.0]
CLFaceは学習知識の保存と漸進的な拡張を目的とした継続的学習フレームワークである。
分類層を排除し、生涯学習を通して固定された資源効率の高いFRモデルをもたらす。
教師モデルの特徴埋め込みの向きを維持するために、幾何学保存蒸留スキームが組み込まれている。
論文 参考訳(メタデータ) (2024-11-21T06:55:43Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
DiffVeinは、静脈分割と認証タスクを同時に処理する統合拡散モデルベースのフレームワークである。
これら2つのブランチ間の機能相互作用を改善するために,2つの特別なモジュールを導入する。
このようにして、我々のフレームワークは拡散とセグメンテーションの埋め込みの間の動的相互作用を可能にする。
論文 参考訳(メタデータ) (2024-02-03T06:49:42Z) - Efficient Vertical Federated Learning with Secure Aggregation [10.295508659999783]
本稿では,安全アグリゲーションのための最先端セキュリティモジュールを用いて,垂直FLを安全かつ効率的に訓練するための新しい設計を提案する。
我々は,同相暗号 (HE) と比較して9.1e2 3.8e4 の高速化を図りながら,本手法がトレーニング性能に影響を及ぼさないことを実証的に実証した。
論文 参考訳(メタデータ) (2023-05-18T18:08:36Z) - Collaborating Heterogeneous Natural Language Processing Tasks via
Federated Learning [55.99444047920231]
提案するATCフレームワークは, 各種ベースライン手法と比較して, 大幅な改善を実現している。
自然言語理解(NLU)タスクと自然言語生成(NLG)タスクを対象とする,広く使用されている6つのデータセットについて,広範な実験を行った。
論文 参考訳(メタデータ) (2022-12-12T09:27:50Z) - Federated Contrastive Learning for Volumetric Medical Image Segmentation [16.3860181959878]
フェデレートラーニング(FL)は、プライバシのためのトレーニングデータをローカルに保持しながら、共有モデルを学ぶことで、この点において役立つ。
従来のFLはトレーニングのために完全にラベル付けされたデータを必要とする。
そこで本研究では,アノテーションを限定したボリューム・メディカル・イメージ・セグメンテーションのためのFCLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-23T03:47:23Z) - A Framework of Meta Functional Learning for Regularising Knowledge
Transfer [89.74127682599898]
本研究では,データ豊富なタスクから一般化可能な関数型モデルをメタ学習することで,メタ関数型学習(MFL)の新たなフレームワークを提案する。
MFLは、限定ラベル付きデータに対する機能訓練が学習すべきより差別的な機能を促進することにより、異なる学習タスクに一般化可能な機能正規化に関するメタ知識を計算する。
論文 参考訳(メタデータ) (2022-03-28T15:24:09Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
クロスサイロ・フェデレーション・ラーニング (FL) は近年, 深層学習による医用画像解析において注目されている。
FLでトレーニングされたモデルと、集中的なトレーニングでトレーニングされたモデルの間にはギャップがある。
本稿では,クライアントの問題を回避し,ドリフトギャップを解消するための新しいトレーニングフレームワークであるFedSMを提案する。
論文 参考訳(メタデータ) (2022-03-18T19:50:07Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
フェデレートラーニング(FL)のような協調機械学習技術は、データ転送なしで効果的に大規模なデータセット上でモデルのトレーニングを可能にする。
近年のイニシアチブでは、FLで訓練されたセグメンテーションモデルが、局所的に訓練されたモデルと同様のパフォーマンスを達成できることが示されている。
しかし、FLは完全なプライバシ保護技術ではなく、プライバシ中心の攻撃は秘密の患者データを開示することができる。
論文 参考訳(メタデータ) (2021-07-06T12:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。