論文の概要: Development of an interactive GUI using MATLAB for the detection of type and stage of Breast Tumor
- arxiv url: http://arxiv.org/abs/2407.00480v1
- Date: Sat, 29 Jun 2024 16:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:56:15.249641
- Title: Development of an interactive GUI using MATLAB for the detection of type and stage of Breast Tumor
- Title(参考訳): MATLABを用いた乳腺腫瘍のタイプ・ステージ検出のためのインタラクティブGUIの開発
- Authors: Poulmi Banerjee, Satadal Saha,
- Abstract要約: 乳癌は、主に女性で診断された最も一般的ながんの1つである。
男性と女性の割合と比較すると、乳癌の発症傾向は男性よりも女性の方が高いことが判明した。
- 参考スコア(独自算出の注目度): 0.18416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is described as one of the most common types of cancer which has been diagnosed mainly in women. When compared in the ratio of male to female, it has been duly found that the prone of having breast cancer is more in females than males. Breast lumps are classified mainly into two groups namely: cancerous and non-cancerous. When we say that the lump in the breast is cancerous, it means that it can spread via lobules, ducts, areola, stroma to various organs of the body. On the other hand, non-cancerous breast lumps are less harmful but it should be monitored under proper diagnosis to avoid it being transformed to cancerous lump. To diagnose these breast lumps the method of mammogram, ultrasonic images and MRI images are undertaken. Also, for better diagnosis sometimes doctors recommend for biopsy and any unforeseen anomalies occurring there may give rise to inaccurate test report. To avoid these discrepancies, processing the mammogram images is considered to be one of the most reliable methods. In the proposed method MATLAB GUI is developed and some sample images of breast lumps are placed accordingly in the respective axes. With the help of sliders the actual breast lump image is compared with the already stored breast lump sample images and then accordingly the history of the breast lumps is generated in real time in the form of test report.
- Abstract(参考訳): 乳癌は、主に女性で診断された最も一般的ながんの1つである。
男性と女性の割合と比較すると、乳癌の発症傾向は男性よりも女性の方が高いことが判明した。
乳房は、主に癌性と非癌性の2つのグループに分類される。
乳房の塊が癌であると言うと、肺胞、ダクト、アロラ、ストローマから身体の様々な臓器に拡がることを意味する。
一方,非癌性乳頭は有害性は低いが,適切な診断を下し,癌塊に転換するのを避ける必要がある。
これらの乳頭部の診断にはマンモグラム法,超音波画像,MRI画像が用いられる。
また、より良い診断のために、医師は生検を推奨することがあるが、予期せぬ異常が発生した場合、不正確な検査報告が発生する可能性がある。
これらの不一致を避けるため、マンモグラム画像の処理は最も信頼性の高い方法の1つであると考えられる。
提案手法では,MATLAB GUIを開発し,各軸に乳頭部のサンプル像を配置する。
スライダの助けを借りて、実際の乳ンプ画像と既に記憶されている乳ンプサンプル画像とを比較し、テストレポート形式で乳ンプの歴史をリアルタイムで生成する。
関連論文リスト
- Computer Aided Detection and Classification of mammograms using Convolutional Neural Network [0.0]
乳癌は、肺癌に次いで、女性の間で最も大きな死因の1つである。
ディープラーニング(Deep Learning)またはニューラルネットワーク(Neural Network)は、正常な乳房の識別と不規則な乳房の識別に使用できる手法の1つである。
CNNMデータセットは、正常な460枚の画像と異常な乳房の920枚の画像で使用されている。
論文 参考訳(メタデータ) (2024-09-04T03:42:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - Improving Specificity in Mammography Using Cross-correlation between
Wavelet and Fourier Transform [0.0]
乳がんの発生率は世界中で高いが、死亡率は継続的に減少している。
本稿では、離散ウェーブレット変換とフーリエ変換を適用して画像を解析する手法を検討する。
論文 参考訳(メタデータ) (2022-01-20T00:49:33Z) - Breast Cancer Classification Using: Pixel Interpolation [0.0]
提案システムは,Mammogram Image Analysis Society (MIAS)の画像データベースから得られた複数の画像に対して,プログラムを用いて実装し,テストする。
このシステムはより高速に動作し、あらゆる放射線技師が視覚検査によって石灰化の出現について明確な決定を下すことができる。
論文 参考訳(メタデータ) (2021-11-03T16:58:17Z) - Semantic Segmentation and Object Detection Towards Instance
Segmentation: Breast Tumor Identification [0.0]
超音波検査で得られた腫瘍の滑らかさやテクスチャなどの重要な特徴は、乳腺腫瘍の異常をコードしている。
本稿では, 興味領域(腫瘍の境界ボックス)を抽出し, 1つのセマンティックセグメンテーションエンコーダ・デコーダ構造にフィードフォワードする。
プロセス全体は、セマンティックセグメンタとオブジェクト検出器からインスタンスベースのセグメンタを構築することを目的としています。
論文 参考訳(メタデータ) (2021-08-06T20:02:46Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Joint 2D-3D Breast Cancer Classification [22.031221319016353]
デジタルマンモグラフィー(Digital Mammograms、DMまたは2Dマンモグラフィー)とデジタル乳房トモシンセシス(DBTまたは3Dマンモグラフィー)は、乳がんの診断・診断に使用される2種類のマンモグラフィー画像である。
乳がん分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T19:08:16Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。