論文の概要: It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization
- arxiv url: http://arxiv.org/abs/2407.00487v2
- Date: Mon, 12 Aug 2024 14:06:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 20:53:08.506617
- Title: It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization
- Title(参考訳): モーフィング時間:多目的最適化による複数LLMの可能性の解放
- Authors: Bingdong Li, Zixiang Di, Yanting Yang, Hong Qian, Peng Yang, Hao Hao, Ke Tang, Aimin Zhou,
- Abstract要約: モデルマージの目標は、複数のモデルを組み合わせることであり、それぞれが異なるタスクで優れており、個々のソースモデルよりも優れた1つのモデルにまとめることである。
既存の方法は、複数のタスクに取り組むための人間の直感とカスタマイズされた戦略に大きく依存している。
MM-MOと呼ばれる多目的最適化に基づくモデルマージ手法を提案する。
- 参考スコア(独自算出の注目度): 16.54335356612006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a novel approach for large language model merging via black-box multi-objective optimization algorithms. The goal of model merging is to combine multiple models, each excelling in different tasks, into a single model that outperforms any of the individual source models. However, model merging faces two significant challenges: First, existing methods rely heavily on human intuition and customized strategies to tackle multiple tasks. Second, it's difficult to search for the great model merging configuration in limited evaluations. To address these challenges, we propose a multi-objective optimization based model merging method named MM-MO. The proposed method can automatically search merging configurations for multiple tasks with multi-objective optimization algorithms. Moreover, to obtain high-quality model merging configurations within a limited number of evaluation iterations, we have made several improvements to multi-objective Bayesian optimization specifically for model merging scenarios. First, we introduced a weak-to-strong method to improve the acquisition strategy. Second, we employed Fisher information to select configurations, further increasing the chances of discovering superior model merging configurations. Third, we designed a sparsity metric as an additional optimization objective to enhance the model's generalization performance across different tasks. We conducted comprehensive experiments with other mainstream model merging methods, demonstrating that our method consistently outperforms them. Moreover, performance improvements are observed even on the tasks not explicitly targeted as optimization objectives, indicating that our method enhances the overall potential of the model. ...
- Abstract(参考訳): 本稿では,ブラックボックス多目的最適化アルゴリズムを用いた大規模言語モデル統合のための新しいアプローチを提案する。
モデルマージの目標は、複数のモデルを組み合わせることであり、それぞれが異なるタスクで優れており、個々のソースモデルよりも優れた1つのモデルにまとめることである。
しかし、モデルマージには2つの大きな課題がある: まず、既存の手法は、複数のタスクに取り組むために人間の直感とカスタマイズされた戦略に大きく依存する。
第二に、限られた評価で設定をマージする優れたモデルを探すのは困難です。
これらの課題に対処するため,MM-MOと呼ばれる多目的最適化に基づくモデルマージ手法を提案する。
提案手法は,多目的最適化アルゴリズムを用いて,複数タスクのマージ構成を自動的に検索する。
さらに, モデルマージシナリオに特化して, 多目的ベイズ最適化にいくつかの改良を加えた。
まず, 獲得戦略を改善するために, 弱強法を導入した。
第2に、設定の選択にFisher情報を使用し、優れたモデルマージ構成を発見する可能性をさらに高めました。
第3に、異なるタスク間でのモデルの一般化性能を高めるために、余剰距離を追加最適化の目的として設計した。
我々は,他の主流モデルマージ手法を用いた総合的な実験を行い,その有効性を実証した。
さらに,最適化対象として明示的に目標にされていないタスクにおいても,性能改善が観察され,本手法がモデル全体のポテンシャルを高めることが示唆された。
はぁ...。
関連論文リスト
- Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
本稿では,MLLMのマルチモーダル推論能力を高めるための選好最適化プロセスを提案する。
我々は,マルチモーダルCoT性能を向上する,MPO(Mixed Preference Optimization)と呼ばれるシンプルで効果的な手法を開発した。
我々のモデルであるInternVL2-8B-MPOは、MathVista上で67.0の精度を実現し、InternVL2-8Bを8.7ポイント上回り、10倍のInternVL2-76Bに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - HM3: Hierarchical Multi-Objective Model Merging for Pretrained Models [28.993221775758702]
モデルマージ(英: Model merging)は、複数の大きな事前訓練されたモデルを単一のモデルに組み合わせ、パフォーマンスを向上し、タスク適応性を高める手法である。
本稿では,よりフレキシブルで包括的なモデルマージ技術への大きな進歩を示す。
我々は、重みベクトルのオフラインサンプリングを用いてポリシーと価値ネットワークを訓練し、マージ戦略のオンライン最適化に使用される。
論文 参考訳(メタデータ) (2024-09-27T16:31:31Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
既存の手法は主に、1つの報酬関数に対してLMを最適化することに集中し、それらの適応性は様々な目的に制限される。
本稿では,予測の線形結合から次のトークンを出力する復号時間アルゴリズムである$textbfmulti-objective decoding (MOD)$を提案する。
提案手法は, 自然条件下であっても, 既存のアプローチが準最適であることを示すとともに, 提案手法の最適性を保証する。
論文 参考訳(メタデータ) (2024-06-27T02:46:30Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
本稿では,ベイズ的多目的・多忠実度最適化(MOMF)に対する新しいアプローチについて検討する。
複数目的とデータソースの同時最適化を支援するために,信頼度基準の革新的利用を提案する。
本手法はプラズマ物理学や流体力学などの分野におけるシミュレーション問題の解法に適用可能である。
論文 参考訳(メタデータ) (2021-12-27T20:55:26Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
本稿では,多目的最適化問題を解くための多目的深部強化学習法を提案する。
本手法では,各サブプロブレムをアテンションモデルにより解き,入力ノードの構造的特徴とノード的特徴を活用できる。
論文 参考訳(メタデータ) (2020-02-13T12:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。