論文の概要: AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization
- arxiv url: http://arxiv.org/abs/2503.23733v1
- Date: Mon, 31 Mar 2025 05:13:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:38:54.485202
- Title: AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization
- Title(参考訳): AdaMMS:教師なし係数最適化を用いた不均一多モード大言語モデルのモデルマージ
- Authors: Yiyang Du, Xiaochen Wang, Chi Chen, Jiabo Ye, Yiru Wang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Zhifang Sui, Maosong Sun, Yang Liu,
- Abstract要約: 異種MLLMに適した新しいモデルマージ手法であるAdaMMSを提案する。
提案手法は,マッピング,マージ,検索という3段階の課題に対処する。
ラベル付きデータ無しで異種MLLMをマージできる最初のモデルマージ手法として、AdaMMSは様々なビジョンベンチマークで過去のモデルマージ手法より優れている。
- 参考スコア(独自算出の注目度): 86.8133939108057
- License:
- Abstract: Recently, model merging methods have demonstrated powerful strengths in combining abilities on various tasks from multiple Large Language Models (LLMs). While previous model merging methods mainly focus on merging homogeneous models with identical architecture, they meet challenges when dealing with Multimodal Large Language Models (MLLMs) with inherent heterogeneous property, including differences in model architecture and the asymmetry in the parameter space. In this work, we propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs. Our method tackles the challenges in three steps: mapping, merging and searching. Specifically, we first design mapping function between models to apply model merging on MLLMs with different architecture. Then we apply linear interpolation on model weights to actively adapt the asymmetry in the heterogeneous MLLMs. Finally in the hyper-parameter searching step, we propose an unsupervised hyper-parameter selection method for model merging. As the first model merging method capable of merging heterogeneous MLLMs without labeled data, extensive experiments on various model combinations demonstrated that AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
- Abstract(参考訳): 近年,複数の大規模言語モデル (LLM) の様々なタスクにおける能力の組み合わせにおいて,モデルマージ手法は強力な強みを示している。
従来のモデルマージ手法は主に同質なモデルと同一のアーキテクチャを融合することに焦点を当てていたが、モデルアーキテクチャの違いやパラメータ空間の非対称性など、本質的に異質な性質を持つマルチモーダル大言語モデル(MLLM)を扱う場合の課題に対処する。
本研究では,異種MLLMに適した新しいモデルマージ手法であるAdaMMSを提案する。
提案手法は,マッピング,マージ,検索という3段階の課題に対処する。
具体的には、モデル間のマッピング関数を設計し、異なるアーキテクチャのMLLMにモデルマージを適用する。
そして、モデルウェイトに線形補間を適用し、不均一MLLMの非対称性を積極的に適応させる。
最後に,モデルマージのための教師なしハイパーパラメータ選択法を提案する。
ラベル付きデータ無しで異種MLLMをマージできる最初のモデルマージ法として、様々なモデル組み合わせに関する広範な実験により、AdaMMSは様々な視覚言語ベンチマークにおいて、以前のモデルマージ方法よりも優れていることを示した。
関連論文リスト
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Non-Uniform Parameter-Wise Model Merging [17.989809995141044]
我々は新しいアプローチであるNon-uniformを導入する。
賢いモデルマージ(英: wise Model Merging、NP Merge)は、各モデルのコントリビューションを学習することでモデルをマージする手法である。
勾配ベースの最適化を使った最終モデルへのパラメータ。
提案手法の有効性を実証的に実証し, 過去の手法よりも優れていた各種アーキテクチャのモデルを複数設定でマージする手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-12-20T00:05:14Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging [11.186194228460273]
本稿では,各ベースモデルのタスク上でのマージモデルの性能を目的として扱う,嗜好意識のモデルマージ問題を提案する。
提案したモデルマージにより,多様なトレードオフモデルが生成され,最先端のマージベースラインと比較して高いテスト精度が得られることを示す。
論文 参考訳(メタデータ) (2024-08-22T03:41:14Z) - PLeaS -- Merging Models with Permutations and Least Squares [43.17620198572947]
PLeaSと呼ばれるモデルをマージする2段階の新たなアルゴリズムを提案し、制約を緩和する。
PLeaSはアライメントを最大化することで各層のノードに部分的にマッチする。
また、細調整されたドメインからデータを入手できないという難題に対処するために、我々のメソッドをどのように拡張できるかを実証する。
論文 参考訳(メタデータ) (2024-07-02T17:24:04Z) - Model Merging and Safety Alignment: One Bad Model Spoils the Bunch [70.614652904151]
LLM(Merging Large Language Models)は、複数の専門家のLLMを1つの汎用モデルに結合するコスト効率のよい手法である。
現在のアプローチでは、マージ時の安全性の整合性の重要性を見落とし、非常に不整合のモデルに繋がることが多い。
我々は,既存の手法がドメインの専門知識を伝達するだけでなく,ミスアライメントを伝播することを示すために,いくつかの一般的なモデルマージ手法を評価した。
論文 参考訳(メタデータ) (2024-06-20T17:59:58Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。