Graph Neural Networks Gone Hogwild
- URL: http://arxiv.org/abs/2407.00494v1
- Date: Sat, 29 Jun 2024 17:11:09 GMT
- Title: Graph Neural Networks Gone Hogwild
- Authors: Olga Solodova, Nick Richardson, Deniz Oktay, Ryan P. Adams,
- Abstract summary: Message passing graph neural networks (GNNs) generate catastrophically incorrect predictions when nodes update asynchronously during inference.
In this work we identify "implicitly-defined" GNNs as a class of architectures which is provably robust to partially asynchronous "hogwild" inference.
We then propose a novel implicitly-defined GNN architecture, which we call an energy GNN.
- Score: 14.665528337423249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message passing graph neural networks (GNNs) would appear to be powerful tools to learn distributed algorithms via gradient descent, but generate catastrophically incorrect predictions when nodes update asynchronously during inference. This failure under asynchrony effectively excludes these architectures from many potential applications, such as learning local communication policies between resource-constrained agents in, e.g., robotic swarms or sensor networks. In this work we explore why this failure occurs in common GNN architectures, and identify "implicitly-defined" GNNs as a class of architectures which is provably robust to partially asynchronous "hogwild" inference, adapting convergence guarantees from work in asynchronous and distributed optimization, e.g., Bertsekas (1982); Niu et al. (2011). We then propose a novel implicitly-defined GNN architecture, which we call an energy GNN. We show that this architecture outperforms other GNNs from this class on a variety of synthetic tasks inspired by multi-agent systems, and achieves competitive performance on real-world datasets.
Related papers
- Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning [17.31465642587528]
Graph neural networks (GNNs) have emerged as a powerful framework for a wide range of node-level graph learning tasks.<n>In this paper, we leverage a statistically grounded method, one-hot graph encoder embedding (GEE), to generate high-quality initial node features.<n>We demonstrate its effectiveness through extensive simulations and real-world experiments across both unsupervised and supervised settings.
arXiv Detail & Related papers (2025-07-15T21:01:54Z) - NN-Former: Rethinking Graph Structure in Neural Architecture Representation [67.3378579108611]
Graph Neural Networks (GNNs) and transformers have shown promising performance in representing neural architectures.<n>We show that sibling nodes are pivotal while overlooked in previous research.<n>Our approach consistently achieves promising performance in both accuracy and latency prediction.
arXiv Detail & Related papers (2025-07-01T15:46:18Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Asynchronous Algorithmic Alignment with Cocycles [22.993659485873245]
State-of-the-art neural algorithmic reasoners make use of message passing in graph neural networks (GNNs)
Typical GNNs blur the distinction between the definition and invocation of the message function, forcing a node to send messages to its neighbours at every layer, synchronously.
In this work, we explicitly separate the concepts of node state update and message function invocation.
arXiv Detail & Related papers (2023-06-27T17:13:20Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - ASGNN: Graph Neural Networks with Adaptive Structure [41.83813812538167]
We propose a novel interpretable message passing scheme with adaptive structure (ASMP) to defend against adversarial attacks on graph structure.
ASMP is adaptive in the sense that the message passing process in different layers is able to be carried out over dynamically adjusted graphs.
arXiv Detail & Related papers (2022-10-03T15:10:40Z) - Robust Graph Neural Networks using Weighted Graph Laplacian [1.8292714902548342]
Graph neural network (GNN) is vulnerable to noise and adversarial attacks in input data.
We propose a generic framework for robustifying GNN known as Weighted Laplacian GNN (RWL-GNN)
arXiv Detail & Related papers (2022-08-03T05:36:35Z) - Distributed Graph Neural Network Training with Periodic Historical
Embedding Synchronization [9.503080586294406]
Graph Neural Networks (GNNs) are prevalent in various applications such as social network, recommender systems, and knowledge graphs.
Traditional sampling-based methods accelerate GNN by dropping edges and nodes, which impairs the graph integrity and model performance.
This paper proposes DIstributed Graph Embedding SynchronizaTion (DIGEST), a novel distributed GNN training framework.
arXiv Detail & Related papers (2022-05-31T18:44:53Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis [28.464210819376593]
Graph neural networks (GNNs) are among the most powerful tools in deep learning.
They routinely solve complex problems on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy.
However, both inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and regular computations.
This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel architectures.
arXiv Detail & Related papers (2022-05-19T17:11:45Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
Systems [4.1591055164123665]
We present IGNNITION, a novel open-source framework that enables fast prototyping of Graph Neural Networks (GNNs) for networking systems.
IGNNITION is based on an intuitive high-level abstraction that hides the complexity behind GNNs.
Our results show that the GNN models produced by IGNNITION are equivalent in terms of accuracy and performance to their native implementations.
arXiv Detail & Related papers (2021-09-14T14:28:21Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.